

新しい脂質研究を拓く TLC Blotting

一その原理と応用一

東京医科歯科大学医学部•分子医化学教室 助教授 薬学博士 瀧 孝 雄

1．はじめに

最近筆者らは薄層クロマトグラフィー（TLC）で分離し た脂質成分をそのままプラスチック膜に転写し，この上 で脂質を分析する方法を開発した。シリカダルを担体と して用いるTLCは分離精度が高い，㦷便である，高価 な装置を必要としない，化学的呈色反応が行えるなど多 くの利点を備えていることから天然物化学，生体成分あ るいは薬物代謝物などの分離，同定に広く用いられてい る。脂質生化学の分野においてもTLCは必要不可欠の

分析法として最も氿用されている技術となっている。リ ン脂質あるいは糖脂質を一枚のプレートの上でほぼ完全 に分離しその組成を目で確かめることができるのはTLC を除いてない。しかしながらブレート上で分離した脂質 に酵素反応や結合実験あるいは構造解析を行うことは困難である。そこで，筆者らは HPTLC・プレート（高性能 TLC－プレート）で分離した脂質をそのまま膜に写しと って，この上で糗造解析や酵素反応，生理機能の解析を行う方法の開発をすすめてきた。

図 1．TLC Blotting 法

TAKAO TAKI Ph．D．
Associate Professor Department of Biochemistry Faculty of Medicine
Tokyo Medical and Dental University．
－ $2-$ TLC Blotting，A New Technology for Lipid Research －Its Principle and Applications－

本稿では生体脂質特にリン脂質と糖脂質の HPTLC－プ レートからの転写法とその応用について紹介する。

2．TLC Blotting 法の実際とその特徵

脂質をHPTLC－プレートから写しとるプラスチック膜 として疎水性をもった膜を種々検討した結果，熱や酸に安定である，転写効率がよいことなどの理由から転写膜と してPVDF 膜（polyvinylidene difluoride membrane， ATTO 社製，Clear Blot membrane）を選んだ。以下に PVDF 膜への転写法を示す！！

1．脂質を HPTLC－プレート（MERCK 社製）展開溶媒：クロロホルム 1 メタノール $/ 0.2 \% \mathrm{CaCl}_{2}$ ，（60： $35: 8, \mathrm{v} / \mathrm{v}$ ）で分離する。
2．プレートを風乹し，転写溶媒：イソプロパノール $/ 0.2 \% \mathrm{CaCl}_{2}$／メタノール（ $40: 20: 7, \mathrm{v} / \mathrm{v}$ ）にプ レートを侵す（20秒間）。
3．プレートを清浄なガラスの上にのせ，直ちに PVDF膜とグラスフィルター紙（Whatman 社製，GF／A） をのせる。
4． 180 度に熱したアイロンで 30 秒間，上から押をえ つける。

a．図に示した眯脂質（ $3 \mu \mathrm{~g}$ ）の HPTLC－プレートによる分離。
b．HPTLC－プレートで分離した梏脂質をTLC Blotting した結果。発色はオルシノール－ $\mathrm{H}_{2} \mathrm{SO}_{4}$ 試薬

図 2．糖脂質の TLC Blotting

3．PVDF 膜へのブロットの定量性

この技術では，HPTLC－プレートで分離された脂質は定置的に転写されるか，転写された脂質は化学変化を起 こしていないか，の 2 点が問題となる。まず転写の定量性を明らかにするため，次の実験を行った。

2 枚の HPTLC・プレートに糖脂質を展開をせ，その 1枚を $\overline{\mathrm{TL}} \overline{\mathrm{C}}$ Blotting 法に用いる。HPTLC－プレートおよ

5．PVDF 膜をとりだす。
以上の操作で糖脂質およびリン脂質はほぼ定量的に HPTLC－プレートから，PVDF 膜に転写される。図1に その方法を示した。

PVDF 膜にブロットされた脂質の検出にはTLCの発色に用いる試薬を使用できる。HPTLC－プレートの場合 は噴霧するのが一般的であるが，PVDF 膜の場合は発色試薬に漫すことができるので，均一な発色が得られる。 しかし，PVDF 膜は疎水性なので発色試薬はメタノール などを添加して試薬と PVDF 膜をなじみやすくする。 HPTLC－プレート上でリン脂質や糖脂質を検出する場合，硫酸や塩酸など強い酸を含む試薬を用いるので発色した色は過剰な酸によって分解され，やがて退色するが， PVDF 膜の場合は水洗することによって過剰な酸を除去 することができる。このため呈色した色は長期間安定に保存でき，ノート等にファイルすることも可能である。

我々はこのブロット法を＂TLC•Blotting＂と呼んで脂溶性成分の転写に一般的に用いることにした。
図2には糖脂質のTLC Blotting の結果を，図3には リン脂所の TLC Blottingの例を示した。

a）それぞれのリン脂質（ $5 \mu \mathrm{~g}$ ）を HPTLC－プレートで分離した図。
b）HPTLC－プレートで分離したリン脂質のTLC Blotting の結果。発色は Dittmer－Lester 試䅛
1．ホスファチジルエタノールアミン
2．ホスファチシルイノシトール
3．ホスファチシルセリン
4．ホスファチシルコリン
5．スフィンゴミエリン

図3．リン脂質の TLC Blotting

びPVDF 膜をオルシノール／硫酸試薬によって発色させ た後，クロマトスキャナーにて定量，その結果を比較し た。図4に結果の一部を示した。興味深いことにTLC Blotting 後，PVDF 膜で呈色したほうが高い測定値を示 している（図 4 b ）。この理由には次の 2 点が考えられる。 1）PVDF 膜では発色試薬液に浸すため糖脂質バンドが均一に呈色される。 2）HPTLC－プレートでは分離され

た脂質は0．25 mm のシリカゲルの厚さの中に分布してい るのに比べ，PVDF 膜ではシリカゲル層に分布していた脂質がPVDF 膜表面に㵋縮きれる。

TLC Blotting した後，HPTC－プレートに発色試薬を噴霧して調べても，糖脂質はもはや検出されない。リン

a．種々の糖脂斦の漊度依存的転写（オルシノールー $\mathrm{H}_{2} \mathrm{SO}_{4}$ 試楽に
よる呈色
b．HPTLC－ブレート上と TLC Blotting 後PVDF 膜に南䒠きれた ラクトシルセラミド（LacCer）の検出感度の比較
c．リン脂質の婊度依存的転写（Dittmer－Lester 試薬による呈色）
図 4．TLC Blotting の定量性

4．＂TLC Blotting＂による脂質の分離精製

これまでの結果から脂質を HPTLCプレートから定量的に PVDF 膜に転写できることが明らかになった。そこ で脂質の分離精製に本法を応用した。その方法を以下に示す。

1．脂質を HPTLC－プレートで分離する。
2．プリムリン試薬を噴露する。
3．風乾後，紫外線ランプ（ 365 nm ）のもとで脂質の分離を確認するとともに，バンドの位置を色鉛筆でマ ークする。

4．転写溶媒：イソプロパノール $/ 0.2 \% \mathrm{CaCl}_{2} /$ メタ ノール（40：20：7，v／v）に 20 秒間プレートを浸 す。
5．プレートを取り出し直ちにPVDF 傥，グラスフィ ルターをのせ $180^{\circ} \mathrm{C}$ に温めたアイロンを 30 秒間押し付ける。
6．PVDF 脸には脂質と共に色鉛篻のマークが転写さ れる。
7．風乾後，膜を水で洗う。
8．膜を風乾し，色鉛䇥の部分を切り取る。
9． 0.5 ml のメタノールにて膜から脂勧を抽出する。
この方法で分離精製したヒト胎便の中性糖脂質および リン脂質のTLCの結果を図5に示した。2次元TLCで顽出した20の胎便糖脂質バンドがこの方法によって単一 バンドにまで精製されているのがわかる。これまで不可能であった多種類の糖脂饮成分を一度に精製することが TLC Blottingによって可能になった。

B．PVDF 膜に朝写した糖脂㰩
C．TLC Blotting によって精製した榶脂解（オルシノール試楽に よる呈色）

図5．ヒト胎便中性糖脂質のTLC Blottingによる分離精製

5．TLC Blotting の脂質分析への応用

TLC Blotting で PVDF 膜に写された脂質の最大の利点は，PVDF 膜上で構造解析，免疫反応，酵䒺反応，生理活性の検出など幅広い実験が行えることである。それ にはPVDF 膜に写された脂質が化学変化していないこと が条件となる。ここではいくつかの応用例を紹介しながら転写された脂質が化学変化していないことを示す。

5－1．質量分析による構造解析－TLC Blotting－ FAB－MS 分析一

TLC BlottingによってPVDF 膜に転写した糖脂質の質量分析による構造解析を試みた。PVDF 膜に転写され たガングリオシド GM3（NeuAc•Gal－Glc－Ceramide）を切り取って，これを直接質量分析した。その結果を図6 に示す。種々の脂肪酸をもった分子イオンとともにそれ らの分子種に対応するフラグメントイオンがみられる。種々の糖脂質を用いて検討した結果，約 $1 \mu \mathrm{~g}$ で分析で きることが明らかとなったが，この方法の大きな利点は， それぞれの脂質を精製することなく TLC Blottingした ものを直接解析できることである。

5－2．免疫染色

HPTLC・プレート上で免疫染色によって抗原を検出す る方法はほほ確立している。しかしながらシリカゲルが はがれないようにポリイソブチルメタクリレート処理す る必要があり，プレートのロットによっては，さらに細心の注意が必要となる。TLC Blotting したPVDF膜の場合は，膜のサイズにあわせたビニールバッグに抗体と ともにブロットしたPVDF 膜を入れ，振とうさせながら反応できる。図7にはシアリルパラグロボシド（NeuAc• Gal－GlcNAc－Gal－Glc－Ceramide）に対するモノクローナ ル抗体を用いて免疫染色した結果を示す。TLC Blotting した PVDF 膜上での染色のほうが感度がよい。
5－3．酵素反応
糖脂質の合成は糖転移酵素，分解はグリコシダーゼに よって触媒される。パラグロボシド（Gal－GlcNAc－Gal－ Glc－Ceramide）に対するモノクローナル抗体（H－11）${ }^{21}$ を用いた免疫染色法によってガラクトース転移酵素とシ アリダーゼの酵素活性測定に応用することができる。そ の原理を図8に示した。
5－3－1．ガラクトース転移酵素活性3．4）
TLCでガラクトース転移酵素の基質となるアミノ－CTH を展開させた後 TLC Blotting でPVDF 膜に転写する。 PVDF 膜と UDP－Gal， MnCl_{2} さらに酵素をビニールバ ッグに添加して反応させる。生じたパラグロボシドをモ ノクローナル抗体を用いた酵素抗体法によって呈色させ る。このように呈色させた後，デンシトグラフなどで定量

することができる。
5－3－2．シアリダーゼ活性 ${ }^{31}$
TLC でシアリルパラグロボシドを展開し，TLC Blotting

法でPVDF 膜に転写する。ビニールバッグにPVDF 膜 とシアリダーゼを加えて反応させる。生じたパラグロボ シドを酔素抗体法によって免疫染色する。

M／Z，1151，1235，1263は胧肪酸の昘さを異にするGM3の分子種。
M／Z，860，944，972はそれぞれのGM3分子稿からシアル酸 （NeuAC）がはずれたフラグメントシグナル

図6．PVDF膜にブロットしたガングリオシドGM3の
FAB－MSスペクトル

シアリルパラグロボシド（1，0．32ng ；2，1．6ng；3．8ng
4， $40 \mathrm{ng} ; 5,200 \mathrm{ng} ; 6,1 \mu \mathrm{~g}$ ）を皆開し HPTLC－プレート上で免疫染
色した（a）．TLC Blotting 後允疫染色した。
ガラクトース転移酵紫の蚞出ではアミノーCTHを基形に，シアリダ一セの桧出ではシアリルバラグロボシドを其斦に用いる。酵㶳反応
の結果生じたバラグロボシドを抗体で検出する。

図7．糖脂斦抗体を用いた免疫染色
抗シアリルパラグロボシド抗体による免疫染色の例

GlcNAc－Gal－Glc－Ceramide（アミノ－CTH）

Gal－GlcNAc－Gal－Glc－Ceramide（パラグロボシド）\rightarrow 生じたバラグロボシ

NeuAc－Gal－GlcNAc－Gal－Glc－Ceramide
（シアリルパラグロボシド）

6．おわりに

本稿では筆者らが研究の対象としている䌅脂質を中心 に TLC Blottingの方法と応用を紹介してきた。本法の特徵は

1．筋単で迅速，2．特殊な機械を用いない，
3．定量的に転写ができる，4．分離した成分の回収 が可能，5．化学発色がTLCと同じようにできる，
6．保存が簡単で呈色した成分の退色がない， などである。

この方法はTLCで分離できる脂溶性のほとんどの分子に応用できるものと考えられる。生体成分，医薬品の代謝生成物，香粧品，食品添加物，海洋生物や植物から分離した天然物，そして環境物質などの微量成分の分離精製に TLC Blotting は大きな威力を発揮するものと思わ

れる。
応用面についても脂質分野の研究を中心に紹介してき たが，これらの例に加えてそれぞれの分野でユニークな研究が展開されるものと期待される。

参考文献

1．Taki T．，Handa S．and Ishikawa D．，Anal．Biochem．221， 312－316（1994）．
2．Myoga A．，Taki T．，Arai K．，Sekiguchi K．，Ikeda I．，Kurata K．and Matsumoto M．，Cancer Res．，48，1525－1516（1988）．
3．Taki T．，Nishiwaki S．，Ishii K．and Handa S．，J．Biochem．， 107，493－498（1990）．
4．Nishiwaki S．，Taki T．，Handa N．，Hattori N．，Takeshita K．， Endo M．and Handa S．，Cancer Res．，52，1875－1880（1992）．

計量法トレーサビリティ制度適合品

pH標準液•金属標準液・イオン標準液

－ pH 標準液（第 2 種）
しゅう酸塩 pH 標準液（1．68），フタル酸塩 pH 標準液（4．01），中性りん酸塩 pH 標準液（6．86），りん酸塩 pH 標準液（7．41），ほう酸塩 pH 標準液（9．18），炭酸塩 pH 標準液（10．01）

金属標準液（潧度：1，000mg／l． $100 \mathrm{mg} /$ ！容量： $100 \mathrm{ml}, 250 \mathrm{ml}$ ）
アルミニウム標準液，ひ素標準液，ビスマス標準液，カルシウム標準液，カドミウム標準液，コバル卜標準液，クロム標準液，銅標準液，鉄標準液，カリウム標準液，マグネシウム標準液，マンガン標
準液，ナトリウム標準液，ニッケル標準液，鉛標準液，アンチモン標準液，亜鉛標準液
－オオン標準液（懐度：1，000mg／l，容量：100ml）
塩化物イオン標準液，ふつ化物イオン標準液，亜硝酸イオン標準液，硝酸イオン標準液，りん酸イオ ン標準液，硫酸イオン標準液，アンモニウムイオン標準液

詳細につきましては，下舐までお問い合わせ下さい。

臨床化学並びに臨床化学検査への接近

12．Glucose その他の糖一尿糖および髄液中の Glucose —

札的医科大学附属病院 検查部 非常勤溝師 佐々木 禎 —

I．はじめに

前報（その11）では，生体内の糖代謝の様相，その変調を知る目的で，日常広く測定の対䒺になっている，生体試料中の glucose の測定について解説した。

そして特に血液中の glucose，すなわち衁糖を中心に， その生理的並びに臨床的意義，血糖を增減きせる因子，血糖値の增減と診断的意義，糖質負荷試験並びに各種の血糖㳥定法一還元法，縮合法および酸素法一について，紹介した。

今回は尿中 glucose（尿糖 urinary sugar と呼ぶ）をテ ーマとして解説を加えたい。通常尿中には微量の glucose しか見出されない（従来尿糖陰性と判定）が，尿中 glucose が增量した場合（尿糖榢性），すなわち糖尿の状態となっ た場合，その原因，沓糖陽性となる病態（状態）につい て解説をし，尿中 glucoseを定量する主な測定法を紹介 してみたい。

II．尿糖一尿中 glucose

1．生理的並びに部断的意義：
（1）尿裾の出現機序
前報で述べたように，掑取した糖質は分解（消化）吸収され，血液中に含有される（血糖）が，その量は insulin やglucagon，副㛑皮钼ホルモン，脳下垂体ホルモン，甲状腺ホルモン，adrenalin 等のホルモン作用により剒減 し，血中での搌度は一定範囲内に保たれている。しかし その上限値（籣値）を上迴る增量の場合には，余分の glucoseは血中より筬を介して尿中に漏出し，糖尿とな る。一方血糖値は正常範囲中にありながら，浻疾忠のた めに尿榶が出現する孯性糖尿病もある。
（2）棈涾の原因一
糖尿はいわゆる湘尿病で代表される所見であるが，そ れ以外多くの原因によっても見出されることが多い。
表1に糖尿の原团をまとめて示したが，健常者でも大量の粆所を掑取した後には，榶尿（食事性糖尿）がみら れることがあり，朋疮思，肥满症，神経症等でも，棿の同化濝が低下してその結果食事性の糖尿を示す。

表1．糖尿の原因

TEIICHI SASAKI，M．D．\＆Ph．D．
Central Clinical Laboratory，
Sapporo Medical College Hospital．
$-8-$
Approaches to Clinical Chemistry and Clinical Chemistry Laboratory Tests．
12．Glucose and Other Sugars－Urinary Glcose and Glucose in Cerebrospinal Fluid．

また一過性の原因（例えば insulin，adrenalin 等の異常分泌等）により糖同化能が低下した場合や，glycogen の分解が促進した場合等には，特発性一過性糖尿がみら れる。しかし糖尿病で代表される持続性䌅尿が頻度が多 く，重要である。この中には表1の様に各種疮患におけ る二次性糖尿や，腎性糖尿も含まれている。従って尿中 glucose 測定による䌅尿のチェックする例が，日常の診断，治療上かなり多い。
（3）尿糖陽性になる病態或いは状態－
前掲の内容（表1）と若干重複するが，表 2 に尿糖（尿中 glucose）が陽性となる病態や状態を，血糖値の増加 と対比して示した。これらのケースは，血糖が正常値で ありながら尿糖がみられる場合と，高血糖に伴って出現 する糖尿とに二分される。前群の中に含まれるのは（1）前述の腎性糖尿の場合の他，（2）尿細管上皮噇害（重金属に よる障害も含む），および（3）妊娠がある。一方後者の群 に属する病態或いは状態としては，（1）糖尿病，（2）肝疾婁， （3）各種の内分泌疾患，（4）代謝性疚患，（5）中枢神神経系疾靑 （脳圧亢進時），（6）食事性の一過性糖尿，（7）その他があげ られる。これ等からも分かる様に，糖尿を呈する病態や生理的状態は，結構多種多様である。

通常尿中に含まれる glucose 量は，微量で従来から険性と表現されてきたが，しかしゼロではない。以前の尿糖検出法は比峧的爫度が低く，特異性にも問題があり，
これでは検出されないということで，月常診断的には多

表2．尿糖（尿中 glucose）陽性となる病態（状態）

[^0]（3）妊娠
2．高血糖性岿尿：
（1）糖尿症（虏性糖尿病）
（2）肝疾患一肝炎，肝硬変，脂肪肝，ヘモクロマトーシス
（3）内分泌疾思—本端肥大症，クッシング病，朔耖皮質機能元進症，想色細胞腫，甲状腺機能低下症，ACTH 産生睡瘄，ステロイド剤辰期投与時
（4）代謝性矣思一商脂血症，肥満症
（5）中枢神経系疾患（朔圧元進時）一湔腫瘍，脑出血，脳外作
（6）食車㭫一適性檻尿一胃切除後，糖質過剩俣取後
 （発作時）
＋，\＃，および\＃）と定性的或いは半定量的に，データ を判読でき実用的である。

2．尿糖の測定法：

尿糖の検査は，血糖測定法の場合と同じく，早くから実施されてきた。従って古くから多くの測定法が考案さ れ利用きれてきた。これ等の測定法を，古いものも含め て表3に示した。この表を参考に，各測定法について解説を加えてみよう。
（1）尿糖測定法の概要—
当初の尿糖の検査は，主に定性或いは半定量であった が，近年は定量的検査が中心である。そして血糖測定用 に用いられた多くの方法が，すべてではないがかなり尿糖の測定に利用されている。

これ等の測定法は，表3に示した様に，遝元法，アル カリカラメル法（Somogyi の $\mathrm{Na}_{2} \mathrm{CO}_{3}$ 法），縮合法，酵素法（試験紙法も含まれる），およびその他の特殊分析法 に大別される。

還元法は古くから利用されてきたが，現在はほとんど使われておらず，アルカリカラメル法は簡便な定量法と して，10数年程前に愛用されていた。また縮合法は血糖測定の場合と同様に施行できる便利さもあり，o－toluidine ホウ酸（o－TB）法等一時使われたことがあった。尿糖測定法の主流は酵素法で，特にその原理を利用した試験紙＊ であり，早くから screening 的目的で使用されてきた。当初は定性～半定量法として位置付けられていたが，そ の後製品の品質も向上し，また以前の肉眼判定から機器 による判読となり，かつ大量の検体の処理も可能となり，現在も広く用いられている。

その他の方法は特別な目的の際に用いられるが，日常検查室で使うことは多くない。
（2）邀元法－
初期の頃は還元法を原理とした滴定法等に頼っていた が，その後比色法として利用され，その報告例も多い。 これはもちろん glucoseがアルカリ性下で加熱した際に示す邀元力を調べる方法であるが，尿中に多く含まれる各種の䢬元性物質の反応もあり，特異性に問題がある。 この原理に基いた 2 ， 3 の簡易測定キットもあったが， これ等の製品も含め現在は還元法は使用されていないの が実情である。
（3）アルカリカラメル法（Somogyiの $\mathrm{Na}_{2} \mathrm{CO}_{3}$ 法）－
この反応の原理は表4に示したが，アルカリ性下（10
＊当初は滤紙片の一端に試薬を染みこませたタイプの製品であっ たが，現在は支持部分は plastic製となり，この点から試験紙とい う表現は送切でない。従って stix，stripの様な表現の方がよいと思 われるが，従来通り＂試湿紙＂という㭔じ方が今なお普及している。
$\%$ 程度の $\mathrm{Na}_{2} \mathrm{CO}_{3}$ 水溶液を利用）で加熱劣沸すると，尿中の glucose はいわゆるカラメル反応の結果 aldehyde重合体を生成し褐色を呈す。この吸光度は glucoseの濃度 に比例するので，比色測定で定量する。しかし glucose以外の多くの糖も同様の呈色を示し，特異性に乏しいが，逆に多くの還元性物の影響はない利点がある。直線性を示す範囲も広くない $(0.2 \sim 6.0 \mathrm{~g} / \mathrm{d} \ell)$ が，自動化測定系に適用して広い濃度範囲にわたり直線性を示すことも知ら

れている。簡便さと試薬が低俩格である点とから，一時期検査の現場で愛用されていた。
（4）縮合法 —
血糖測定に一時期使われていた縮合反応を原理とした o－toluidine ホウ酸（o－TB）法が，失張り尿糖の定量に使われていたこともあった。glucoseを酸性条件下（サ ク酸酸性）で加熱すると，脱水縮合反応の結果 5－hydro－ xymethylfurfural を生成し，これが芳香族アミン類（例

表3．尿糖測定法の分類

＊現在製品としてはほとんど使用されず，また製造中止のものも多い

えばo－toluidine）と反応して青色を呈するというのが， この反応の原理と考えられていたが，D－glucoseとo－ toluidine との間でN－D－glucosyl－o－toluidine を形成， それが炆終的に緑青色の混合反応生成物を生成するのが

原理らしい（前報および表4参照）。glucose以外の aldohexose 等も呈色し，また刺载性の氷サク酸を用い る等の欠点があり，矢張り現在はほとんど用いられてい ない。

表4．主な尿糖測定法の測定反応原理

〔註〕o－TB 法：o－toluidine ホウ酸法，GOD：glucose oxidase，POD：peroxidase，HK：hexokinase，G6P：glucose－6－ phosphate，G6PDH：glucose－6－phosphate dehydrogenase，6PG：6－phosphogluconate

尿中のglucose t测方：する目的で断発され，現在も広 く用いられている試験紙は，glucose oxidase（GOD）を利用する煹素的測定法である。表4に前した様に，glucose は GODにより gluconolactoneと $\mathrm{H}_{2} \mathrm{O}_{2}$ とを生成するの で，その $\mathrm{H}_{2} \mathrm{O}_{2}$ の量を例えば peroxidase（POD）を共役酵素とし，水素供与体 $\left(\mathrm{AH}_{2}\right)$ と反応せせ，その結果定青的に生成した A の吸光度を比色測定する。この供役反応 には phenol（或いは aniline）の誘導体と，4－aminoanti－ pyrineとを用いた酸化的緛合反応により生成したqui－ noneimine dye の比色定呈をする反応例が多い。

しかし前報でも言及した通り，後半の反応は還元物質 の影洪を受け易く，例えば尿中に含まれる諸種の遝元性物質，特に ascorbic acidの干渉による偽㓌性反応が大 きな欠点である。このため現在ほとんどの glucose 測定用の試験紙には，主な尿中干渉成分である ascorbic acid を消去するため，ascorbate oxidaseを含む様に改良を れている（表5参照）。また GODで生成した $\mathrm{H}_{2} \mathrm{O}_{2}$ ，琙 いは消费した O_{2} の量を電極法（表 4 参照）で測定する と，これ等于涉物所の影刯は回避できる。正確なデータ

を出し得る方法として評価されている。
また試験紙法の成紗解読の容観性を高め，同時多数検体の処理を目標に，肉哏判定から機器分析（各稿の尿向䄭分析装椪による）に変りつつある。また GOD 反応の後井の共役反応に catalaseを用いる方法も利用されてい るが，その反応原理は泰 4 に示した様に，catalase 反応 で生成した HCHOを，acetylacetoneを用いる Hantszh反応でlutidine 誘導体とし，その黄色を比色測定すると いうものである。

もう一つの酵素的测定法としては，hexokinase（HK）／ glucose－6－phosphate dehydrogenase（G6PDH）反応系 を用いる方法があり，尿中の微量のglucoseを正確に湘定する際に租用されている。すなわちATPの存在：下で glucoseはHKの作用により，glucose－6－phosphate（G6P） となり，さらにG6PDHにより 6－phosphogluconate（6 PG）となるが，この際其役反応により共存する NADP ${ }^{+}$ は NADPH_{2} に䢗元される。この反応に伴う 340 nm にお ける吸光度の増加をモニターする方法である。
（6）その他の測定法－
表3に示した様な特殊な尿糖测定法もある。しかしこ

れ等は分析化学的には，大いに魅力ある方法もあるが，臨床検査の分野で使うことはほとんどない。ただし目的 によっては他の糖成分等と一緒に分別測定ができる方法 として，イオン交換クロマトグラフィや高速液体クロマ トグラフィ（HPLC）が適切であり，特に HPLCは研究的面も含めて使うことが多くなってきている。
（7）主な尿糖測定法における干渉物質の影響（表5参照）—
すでに述べた様に，尿検体中の物所で測定成績に影響 を与えるものが多い。特に glucose 以外の還元性物斦 （glucose以外の還元糖，creatinine，ascorbic acid，glu－ tathione，尿酸，還元性を示す投与薬剤等）により，䫟著な干渉作用を受ける。GOD 反応を利用した試験紙法 では，尿中の ascorbic acidの影響を受けることが多い。 そのため最近の試験紙では，ascorbate oxidaseを含ませ てその回避に成功している。表5には代表的測定法にお ける干渉物質の影響をまとめて示した。

装5．還元法，縮合法および酵素法に対する干渋物質の影響

測 定 法 干涉物啠		㯰元法 （除甭白法）	$0-\mathrm{TB}$ 法	酵亚法（試験紙法）		
		従来法		Diastix ${ }^{\text {法 }}$		
グ	galactose		\uparrow	\dagger	－	－
号	mannose	\uparrow	\uparrow	－	－	
1	果榶	\uparrow	（ \pm ）	－	－	
乭	pentose	\uparrow	(\pm)	－	－	
奖	glucuronic acid	（＋）	－	－	－	
糖	和糖	（ \pm ）	（ \pm ）	－	－	
類	maltose	（ \pm ）	（土）	－	－	
共	creatinine	\uparrow	－	－－\pm ）	－	
の	尿酸	\uparrow	－	（ \pm ）	－	
運	glutathione	\uparrow	－	(\pm)	－	
笏	ascorbic acid	\uparrow	－	\downarrow	－	
㸣	アルカプトン尿	\uparrow	－	－	－	
	元性薬剤	\uparrow	－～（ \pm ）	－	－	

（註）o－TB 法：o－toluidine ホウ酸法，Diastix法：ascorbate oxidaseを含み，ascorbic acidの干渉を回避できる。

3．尿糖測定法の変逼：

これ等多くの尿糖測定法の使用状況は，当然ながら時代と共に変遷を示した。図1には少々吉いデータである が，1975年から1985年の間の各尿糖測定法の使用頻度を例示した。以前多く使われていた Somogyi の $\mathrm{Na}_{2} \mathrm{CO}_{3}$比色法や，或る程度用いられていた o－toluidine 比色法 は，この10年間に激減し，GOD 比色法（試験紙法で自動化機器による判読の場合も含を）が，非常に増加して いることがわかる。この様な調査は毎年実施されている が，現在この傾向はさらに顕著になっている。

図1．尿糖検查法の変遷（～1983年）

III．随液中の glucose

1．生理的並びに部断的意義：

䯣液 cerebrospinal fluid（CSF）のglucose 量は正党人 で約 $50 \sim 75 \mathrm{mg} / \mathrm{d} \ell$ で，血禁中 glucoseの約 $2 / 3$ の量であ るが，通常血糖値と平行して增減する。病的状態におい ては，脈絡對およびクモ膜下腔毛細管の透過性，CSFの糖分解速度等の変化により増減する。

CSF 中 glucoseはすべての髄膜炎（例えば細菌性および結核性蔵膜炎，等）で，細菌や細胞による糖分解作用に より減少する。ウイルス性髄膜炎では一般に減少しない が，マンプス髄膜炎の $1 / 4$ ，帯状ヘルペス脳炎では，低下することがある。一方 CSF 中 glucoseは糖尿病で者明 に増川し，また脳腫疡，脳出血，尿請症，てんかん発作等では増加する。

2．CSF 中 glucoseの測定法：

原則的には血糖測定に用いられる代表的測定法を，そ のまま利用することができる。最近まで概して古いglu－ cose 測定法が用いられていたが，o～TB 法や酵素的測定法が用いられる様になり，測定精度は大幅に上昇した。一般に血液や尿試料に比べて干涉成分は少なく，測定面 ではあまり問題はない。

NMR シグナルのシフト試薬

関西大学工学部 教盖化学 教授 工学博士 今 井 弘

1．はじめに

天然物のような裆雑な構造をした物質のPMRスベク トルは，シグナルが重なるために，解析が困難である。 このような場合，高い周波数を用いて，分解能をよくす ると，解析しやすくなる。しかし，装羅や経费の面で稓々の問題が生じてくる。そこで，通常の周波数によって分解能が㫿れた PMR スペクトルを得ることができれば，非常に好都合である。

たまたま，Hinckley ${ }^{11}$ は1969年に四湓化炭素中でコレ ステロールと $\left[\mathrm{Eu}(\mathrm{dpm})_{3} \cdot 2 \mathrm{py}\right]$（dpm：dipivaloylmetha• nato，py ：pyridine）が結合するかどうかを PMRによっ て調べたとき，微細樽造はそのままで，シグナルの位茧 のみがいちじるしく低磁場側へ移動し，备シグナルは叫瞭に分離することが発見された。その後，このような現象は $\left[\mathrm{Eu}(\mathrm{dpm})_{3}\right]$ 錯体以外に，多くの常磁性錯体でも起 こることがわかってきた。彼はこのような性所をもつ化合物をシフト試薬（SR：shift reagent）と名つけた。この ことから，通常の周波数によってシグナルの位置を移動 させるには，常磁性の金属錯体を用いればよいことがわ かる。

では，SRにはどのような金属錯体があるのか，どの ような金属錯体がシグナルを高磁場側あるいは低磁場側 へ移動させるのか，また SRを用いると，どのようなこと とが解明されるのか，などについてまとめてみた。

2．基本原理

反磁性の有機化合物（これを基質という）の溶液に常磁性の金属錯体を加えると，NMR スペクトルに変化が生じる。この原因は，（1）基質と常磁性の金属錯体間 において新しい錯体の生成，（2）金属錯体を形成して いる配位子と基質間での配位子交換，などによるもので ある。これはランタニド系の錯体の特異な現象であるの で，常磁性シフト（LIS ：lanthanid induced shift）とい う。

LIS は常磁性誘起シフト（PIS ：paramagnetic induced
shift）と錯体形成シフト（CFS ：complex formation shift） からなっている。

$$
\begin{equation*}
\mathrm{LIS}=\mathrm{PIS}+\mathrm{CFS} \tag{1}
\end{equation*}
$$

また，PISはコンタクトシフト（CS ：contact shift）成分 と擬コンタクトシフト（PS：pseudocontact shift）成分に分けられる。

$$
\begin{equation*}
\mathrm{PIS}=\mathrm{CS}+\mathrm{PS} \tag{2}
\end{equation*}
$$

CS は，金属錯体中の能子スピン（不対能－•）と基斦中の核スピンが Fermi 相互作用により，化学結合を通し て生じるものである。常磁性鍺体の磁気モーメントは核磁気モーメントよりもはるかに大きいので，核スピンは電子スピンによっていちじるしく䚑乱される。このため に，常磁䙺の緩和時間は矧くなり，化学シフトに影響を およほすことになる。したがって，このCSの大きさか ら基所の兆子密度分布に関する情報が得られる。

PSは，金属錯体の電子スピンと基所の核スピンが双極子一双極子相互作用（これを磁気双極子相互作用とい う）により，空間を通して生じるもので，双㮀子シフト ともいう。通常，ランタニド录のSRは主としてPSに よるものである。

プロビオン酸エチル： $1 \times 10^{-4} \mathrm{~mol} / \mathrm{dm}^{3}$ ，溶媒： CCl_{4}
（A）：$\left[\mathrm{Eu}(\mathrm{fod})_{3}\right]$ なL，（B）：$\left[\mathrm{Eu}(\mathrm{fod})_{3}\right] 2.5 \times 10^{-5} \mathrm{~mol} / \mathrm{dm}^{3}$
図1．プロピオン酸エチルのPMRスペクトル（ 60 MHz ）

CFS はSRと基質間で生成する新しい錯体によって，基質内の電子状態が変化して生じるもので，反磁性シフ トともいう。
以上のことからわかるように，不対電子をもつ金属錯体が基質に配位すると，均等に分布していた電子スピン か攪乱されて不均等になり，LIS が生じることになる。 その一例として，$\left[\mathrm{Eu}(\mathrm{fod})_{3}\right]$（fod： $6,6,7,7,8,8,8$－hepta－ fluoro－2，2－dimethyl－3，5－octanedionato）によるプロピ オン酸エチルのPMRスペクトルを図1にあげる。

CS またはPSを求めるには，CS とPSによってLIS

があらわれる金属錯体と，CS またはPSのいずれかによ ってLISがあらわれる金属錯体を用いて得られた化学シ フトの差から求める。たとえば，基質である r－picoline－ N－oxide のPS を求めるには，CS のみである［ $\mathrm{Ni}(\mathrm{acac})_{2}$ ］ （acac：acetylacetonato）に基質が配位したときの化学 シフトと，PSとCSをもつ［Co（acac）$\left.)_{2}\right]$ に基質が配位し たときの化学シフトとの差をとれば求められる。それを図2にあげる。

PS は電子スピンの g 値，スピン状態，温度に依存す る。とくに，PSの温度依存性は T^{-1} に比例する。
（3）

$\mathrm{M}: \mathrm{Co}$（II） Ni （II），溶媒： CHCl_{3}

図2． $\begin{array}{r}\text {－ピコリン－N－オキシドのLIS }\end{array}$

3．シフト試薬

すでに述べたように，SRは主として常磁性の金属錯
 よく用いられる。金属錹体がSRとして用いるには，つ ぎの諸条件を満足させる必要がある。
（1）シグナル幅を広げることなく，大きなシフトが生じること。
（2）溶液中で多種類の基質と錯形成し，その結合が化学量論的に明らかであること。
（3）シフト値が基斦の構造と関係づけられること。
（4）基質のシグナルを妨害する他のシグナルがあら われないこと。
（5）金属錯体の溶解度が大であること。
（6）利用が簡単で，容易に入手できること。
最もよく用いられるのがランタニド（Ln）系の錯体であ る。ただし， La （III）， $\mathrm{Lu}(\mathrm{III})$ 錯体は反磁性であるので用

いられない。また，Gd（III），Sm（III）錯体は磁気異方性 がないので，基質との間で新しい錯体ができてもPSが生じない。これらの四元素を除いた他の元素には，磁気異方性があるので，PSがあらわれる。ここで，よく用 いられる β ージケトン類の配位子を図3に示す。

SRとしての $\left[\operatorname{Ln}(\mathrm{dpm})_{3}\right]$ は Ln の種類によって，つぎ のように分類される。

高磁場側ヘシフトさせる錯体． $\mathrm{Ln}: \mathrm{Dy}>\mathrm{Tb}>\mathrm{Ho} \geqslant$

$$
\mathrm{Pr}>\mathrm{Nd}>\mathrm{Sm}
$$

低磁場側ヘシフトさせる錯体。Ln：Tm＞Yb＞Er＞ Eu
シグナル幅を広げる錯体． $\mathrm{Ln}: \mathrm{Gd}>\mathrm{Dy}>\mathrm{Tb}>\mathrm{Tm}>$

$$
\mathrm{Er}=\mathrm{Ho}>\mathrm{Yb}>\mathrm{Pr}>\mathrm{Eu}>
$$

$$
\mathrm{Sm} \simeq \mathrm{Nd}
$$

高磁場側へのシフトが最も大きいのは，Dy（III），Ho （III）錯体であるが，シグナル幅を広くするのであまり用

いられない。好ましいのは $\mathrm{Yb}(\mathrm{III}), \operatorname{Pr}(\mathrm{III}), \mathrm{Eu}(\mathrm{III})$ 錯体 である。
一般に，$\left[\operatorname{Ln}(\mathrm{dpm})_{3}\right]$ は吸湿性が強く，水分の存在によ ってシフトの状態を乱すので，十分に脱水して無水和物 にする必要がある。また，溶解度が低く，t－ Bu のシグ ナルがやや広領域にわたるので，基質のシグナルを妨害 する場合がある。dpmの錯体についで，fod を配位子と した $\left[\mathrm{Eu}(\mathrm{fod})_{3}\right],\left[\mathrm{Eu}\left(\mathrm{fod}-\mathrm{d}_{27}\right)_{3}\right],\left[\operatorname{Pr}(\mathrm{fod})_{3}\right],\left[\operatorname{Pr}\left(\mathrm{fod}-\mathrm{d}_{27}\right)_{3}\right]$ ， $\left[\mathrm{Yb}(\mathrm{fod})_{3}\right]$ が用いられる。一般に，$\left[\operatorname{Ln}(\mathrm{fod})_{3}\right]$ は強い Lewis 酸であるので，弱い Lewis 塩基の基質にも有用で ある。有機溶媒に対する溶解性は大であるが，［Yb（fod）$)^{3}$ ］ を除いた他の $\left[\operatorname{Ln}(\mathrm{fod})_{3}\right]$ は吸湿性である。以上のほかに， $\left[\operatorname{Ln}(\mathrm{pta})_{3}\right],\left[\operatorname{Ln}(\mathrm{pfd})_{3}\right](\mathrm{Ln}: \mathrm{Eu}(\mathrm{III}), \mathrm{Pr}(\mathrm{III}))$ などがある。 きらに，$\left[\operatorname{Ln}(\mathrm{tfmc})_{3}\right],\left[\operatorname{Ln}(\mathrm{hfpc})_{3}\right](\mathrm{Ln}: \mathrm{Eu}(\mathrm{III}), \operatorname{Pr}(\mathrm{IIII})$,

$\mathrm{R}: t-\mathrm{Bu}(\mathrm{dpm})$ CF_{3}（pta） $\mathrm{CF}_{3} \mathrm{CF}_{2}$（pfd） $\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2}$（fod）
dpm ：dipivaloyl methane
pta ：pivaloyl－trifluoro acetone
pfd ：6，6，7，7．7－pentafluoro－2，2－ dimethyl－3， 5 －heptanedione
fod ： $6,6,7,7,8,8,8$－heptafluoro－ 2，2－dimethyl－3，5－octanedione
$\mathrm{R}^{\prime}: t-\mathrm{Bu}(\mathrm{tbc})$ CF_{3}（tfmc） $\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2}(\mathrm{hfpc})$
tbc：t－buthyl hydroxymethylene camphorate
tfmc ：3－trifluoromethyl－ hydroxymethylene camphorate
hfpe ：heptafluoropropyl hydroxy－ methylene camphorate

Yb（III））は光学活性を示す配位子からなる錯体であって，特にこれらを不斉シフト試薬（CSR：chiral shift reagent） という。CSRによるシグナルのシフトはCSRと光学活性な基所との配位によって，基質内の磁気的環境が変化 すること，さらに配位能力が光学活性な基質間で異なる こと，などによるものである。したがって，CSRは光学対掌体の分離や光学純度の決定などを行うときに用いら れる。

オレフィンやアルキル基をもつ芳香族炭化水素に対す るSRがLindoy ら ${ }^{27}$ によって見つけだされた。それは， すでに知られているSRと他の金属錯体との付加錯体， たとえば図 4 に示たような $\left[E u(f o d)_{3}\right]$ と $\left[\mathrm{Co}(\mathrm{acac})_{3}\right]$ の付加錯体である。相手の金属錯体として $\left[\mathrm{Co}(\mathrm{acac})_{3}\right]$ の ほかに，［Ag（fod）］や［Ag（tfa）］（tfa：trifluoroacetonato） も用いられる。

図4． $\left.\mathrm{CO}(\mathrm{acac})_{3}\right]$ と $\left[\mathrm{Eu}(\mathrm{fod})_{3}\right]$ の付加錯体

トルエンのプロトンシグナルは $[\operatorname{Ln}(f o d) 3](\operatorname{Ln}: \operatorname{Pr}(I I I)$, $\mathrm{Yb}(\mathrm{III})$ ）を添加してもシフトしないが，これに［Ag（fod）］ または［Ag（tfa）］を加えると図5のようにシフトして， シグナルの分離が良くなる ${ }^{3!}$ 。また，ジフェニルベンゼ ンについても同じような結果が得られている。このよう なシフトの原因は，（1）Ag（I）がオレフィンまたはアル キル基部分に結合して $\mathrm{Ag}(\mathrm{I})$ の付加錯体になる，（2）$[\mathrm{Ag}$ （fod）］または［Ag（tfa）］は β ージケトンの酸素原子でSR に配位する，などが考えられる。

有機化合物の立体的な立場から，このような $\operatorname{Ln}(I I I)-$ $\mathrm{Ag}(\mathrm{I})$ の二核錯体からなるSRついて，Wenzel は詊練 に解説している4！。

つぎに，${ }^{13} \mathrm{C}$ のシグナルに対するSRについて述べよ う。

不対電子をもたない反磁性の $\left[\mathrm{La}(\mathrm{dpm})_{3}\right]$ を用いた場

合，${ }^{13} \mathrm{C}$ のLIS はCFS の寄与によるものであり，一方，常磁性の $\left[\mathrm{Eu}(\mathrm{fod})_{3}\right]$ や $\left[\operatorname{Pr}(f o d)_{3}\right]$ を用いた場合の LIS は PS とCS の寄与によるものである。［Yb（fod） 3 ］によるLIS は，CSよりをPS の䨓与の方が大きいので，${ }^{13} \mathrm{C}$ NMR スペクトルの測定に適したSRである。

一例として，反磁性の $\left[\mathrm{La}(\mathrm{dpm})_{3}\right]$ を用いて，つぎのよ うな化合物の ${ }^{13} \mathrm{C}$ のシフトが調べられている。

11．5（2－C）
（低磁場シフト）

$-4.5(2-\mathrm{C})$
（高磁場シフト）

これによると，カルボニル炭素が大きく低磁場側へシ フトし，ついでヒドロキシル基が結合した炭素が低磁場側ヘシフトする。一方， NH_{2} が結合した炭素に隣接した メチル基炭素は高磁場側へシフトする。

また，4－メチルアニリンと4－メチルピリジンについて， ${ }^{13} \mathrm{C}$ のシフトが $\left[\mathrm{La}(\mathrm{fod})_{3}\right],\left[\mathrm{Eu}(\mathrm{fod})_{3}\right],\left[\operatorname{Pr}(\mathrm{fod})_{3}\right]$ を用い て調べられている5）。それを表1に示す。

SRは兩化合物ともN原子に付加するために，4－メチ ルアニリンでは（1）－Cが，4－メチルピリジンでは（2）－C がそれぞれいちじるしく低磁場側または高磁場側ヘシフ トする。

以上のような $\operatorname{Ln}(\mathrm{III})$ 錯体のほかに，つぎのような性所を利用したSRがある。
（1）環状 π 電子系の鉄ーフタロシアニン錯体やゲル マニウムーポルフィリン系錯体における大きな環電流効果の利用 ${ }^{61}$ 。
（2）フタロシアニン類の化合物のように，アミン類 と選択的に配位する性質の利用7。
（3）テトラフェニルホウ酸塩のように，陽イオン性 のSRと形成したイオン対の利用 ${ }^{8}$ 。
（4） $\mathrm{UO}_{2}{ }^{2+}$ との錯形成の利用。

図5．付加錯体をSRとしたトルエンのPMRスペクトル

表1．SRによる ${ }^{13} \mathrm{C}$ シグナルのシフト

化合物	SR	${ }^{13} \mathrm{C}$ シグナル［ppm］				
		（2）-C	（2）-C	（3）－C	（4）－C	（5）－ C
	無 添 加	143.4	114.8	129.2	127.1	20.5
	$\left[\mathrm{La}(\mathrm{fod})_{3}\right]\{$	$\begin{gathered} 141.8 \\ (-1.6) \end{gathered}$	$\begin{aligned} & 117.6 \\ & (+2.8) \end{aligned}$	$\begin{gathered} 129.9 \\ (+0.7) \end{gathered}$	$\begin{gathered} 130.4 \\ (+3.3) \end{gathered}$	$\begin{gathered} 20.8 \\ (+0.3) \end{gathered}$
	［Eu（fod）$\left.{ }_{3}\right]\{$	$\begin{gathered} 212.6 \\ (+69.2) \end{gathered}$	$\begin{gathered} 128.0 \\ (+13.2) \end{gathered}$	$\begin{gathered} 144.7 \\ (+15.5) \end{gathered}$	$\begin{gathered} 132.9 \\ (+5.8) \end{gathered}$	$\begin{gathered} 26.2 \\ (+5.7) \end{gathered}$
	$\left[\operatorname{Pr}(\mathrm{fod})_{3}\right]\{$	$\begin{array}{r} 44.0 \\ (-99.4) \end{array}$	$\begin{array}{r} 91.3 \\ (-23.5) \\ \hline \end{array}$	$\begin{array}{r} 113.4 \\ (-15.8) \end{array}$	$\begin{array}{r} 127.1 \\ (0.0) \end{array}$	$\begin{array}{r} 14.0 \\ (-6.5) \end{array}$
	無 添 加		149.4	124.5	146.9	21.0
	［ $\left.\mathrm{La}(\mathrm{fod})_{3}\right]\{$		148.5 (-0.9)	$\begin{gathered} 124.7 \\ (+0.2) \end{gathered}$	$\begin{gathered} 149.1 \\ (+2.2) \end{gathered}$	$\begin{gathered} 21.1 \\ (+0.1) \end{gathered}$
	$\left[\mathrm{Eu}(\mathrm{fod})_{3}\right]\{$		$\begin{gathered} 232.9 \\ (+83.5) \end{gathered}$	$\begin{gathered} 105.3 \\ (-19.2) \end{gathered}$	$\begin{gathered} 180.5 \\ (+33.6) \end{gathered}$	$\begin{gathered} 24.2 \\ (+3.2) \end{gathered}$
	$\left[\operatorname{Pr}(\mathrm{fod})_{3}\right]\{$		$\begin{array}{r} 38.8 \\ (-110.6) \end{array}$	$\begin{gathered} 99.7 \\ (-25.0) \end{gathered}$	$\begin{array}{r} 116.5 \\ (-30.4) \end{array}$	$\begin{array}{r} 9.4 \\ (-11.6) \end{array}$

カッコ内の値はSR無添加の場合との差である。十は低磁場㑡，一は高磁場側へシフトし たことを示す。

4．シフト試薬と基㑭との結合

基所を四塩化炭素または重クロロホルム（ベンゼン，二硫化炭素なども用いられる）に溶かした溶液に適量の SRを加えると，岒者間に新しい錯体ができる。一般に，

基質中の官能基と SRとの相互作用の強さは

$$
\begin{aligned}
\mathrm{R}_{3} \mathrm{PO} & >(\mathrm{RO})_{3} \mathrm{PO}
\end{aligned}>\mathrm{R}_{2} \mathrm{SO}>\mathrm{RNH}_{2}>\mathrm{ROH}>\mathrm{py}>8 \text { RSH }>\mathrm{R}_{2} \mathrm{CO} \approx \mathrm{R}_{2} \mathrm{O}>\mathrm{RCOOR}{ }^{\prime}>\mathrm{RCN}
$$

である。一方，SRとほとんど相互作用しない官能基ま たは化合物には，つぎのようなものがある。
（1）アゾ基はcis型のSRと反応するが，trans型の SRとは反応しない。
（2）二重結合，炭化水素のハロゲン化物，チオエー テル，チオケトン，ニトロ基はSRと反応しな い。
β－ジケトンの末端アルキル基をフルオロ化した配位子からなる金属錯体の溶解度はフルオロ化していない配位子からなる金属錯体よりも增大し，また F の強い電子求引性によって，強い Lewis 酸になるので，基質に対す る配位能力が強くなる。その一例としてSRの種類なら びに濃度によるdi－n－butyl etherの PMR スペクトル9 を図6にあげる。

試料济液：（A） $\mathrm{CCl}_{4} 0.5 \mathrm{ml}$ 中に試料 $1.0 \times 10^{-4} \mathrm{~mol}(13 \mathrm{mg})$ と盷和 ［ Eu （thd）$)_{3}$ を含む。（B） CCl 4 中に試料 $1.0 \times 10^{-4} \mathrm{~mol}$（ 13 mg ）と $\left[\mathrm{Eu}(\mathrm{fod})_{3}\right] 0 \sim 7.5 \times 10^{-5} \mathrm{~mol}(0 \sim 75 \mathrm{mg})$ を含む。

図6．ジーnーブチルエーテルの PMRスペクトル（ 60 MHz ）
［Eu（thd）$)_{3}$ ］（thd：2，2，6，6－tetramethyl－3，5－heptane－ dionato）は溶媒に溶けにくく，また弱い Lewis 酸であ るので，配位能力も弱く，PMRスペクトルに効果的な変化を期待することができない。それに対して，$\left[\mathrm{Eu}(\mathrm{fod})_{3}\right]$ はその瀤度の增加とともに，シグナルは低磁場側ヘシフ トし，分離もよくなる。このようなシグナル位置の変化 は $\left[\mathrm{Eu}(\mathrm{fod})_{3}\right]$ と錯形成したエーテルと，錯形成していな

いエーテルとの間で急速な交換反応が起こるためである といわれている。

一般に，付加錯体の結合比は1：1 である。しかし，四塩化炭素中における［La（tta）3］（tta：thenoyl trifluoro－ acetonato）と MIBK の付加錯体は，そのうちの約 50% が $\left[\mathrm{La}(\mathrm{tta})_{3}(\mathrm{MIBK})_{2}\right]$ で，残りは $1: 1$ 錯体であり，ま た $\left[\mathrm{La}(\mathrm{tta})_{3}\right]$ と $(\mathrm{Bu})_{3} \mathrm{PO}_{4}$ や $\mathrm{Bu}_{2} \mathrm{SO}$ との付加錯体は1： 2 である。このほかに，$\left[\mathrm{Eu}(\mathrm{fod})_{3}\right]$ は基質と $1: 2$ 錯体 を，$\left[\operatorname{Pr}(f o d)_{3}\right]$ は基質と $1: 3$ 錯体を形成する。

5．応 用

SRによるプロトンシグナルのLISを利用して，有機化合物の分析や立体構造の研究，きらに光学異性体につ いて種々の研究がなされている。ここでは，これらに関 する若干の研究例を紹介する。

SRとして，$\left.[\operatorname{Pr}(t p i p))_{3}\right]$（tpip：tetraphenylimidodi－ phosphinato）を用いて飽和ならびに不飽和脂肪酸の分析 が行われている ${ }^{10 \%}$ 。これは，試料と SR 間で1：1の付加錯体が生成することを利用して，末端メチル基のシグ ナル数とシフトの相対値から混合物中の飽和脂肪酸を確認する方法である。

また，アキラルとキラルな SR を用いた光学異性体の研究が多数報告されている。ラセミ化した mepafynol（3－ methyl－1－pentyn－3－ol）の PMRスペクトルが CDCl_{3} 中 でアキラルな $\left[\mathrm{Eu}(\mathrm{fod})_{3}\right]$ とキラルな $\left[\mathrm{Eu}(\mathrm{hfpc})_{3}\right]$ を用い て調べられた ${ }^{11)}$ 。その結果，$\left[\mathrm{Eu}(\mathrm{hfpc})_{3}\right]$ を用いることに よって， 3 位のメチル基から生じる鏡像異性シフトの相違から mepafynol の光学純度が決定されている。また， mepafynol と $\left[\mathrm{Eu}(\mathrm{hfpc})_{3}\right]$ の CDCl_{3} 溶液に $[\mathrm{Ag}(\mathrm{fod})]$ を加え，その濃度を順次増加させると，シフトの大きさや シグナルの強度が変化することが報告されている。
医薬品に対する最近のNMRスペクトルの研究として，骨格筋弛緩剤である mephenoxalone ${ }^{12)}$ をはじめ， $5-$ methyl－5－phenylhydantoin ${ }^{131}$ や α^{-}ethyl－α－phenyl－ succinimide ${ }^{14)}$ は $\left[\mathrm{Eu}(\mathrm{fod})_{3}\right]$ と $\left[\mathrm{Eu}(\mathrm{hfpc})_{3}\right]$ によってLIS があらわれ，境像異性シフトの相違が観察されている。 とくに，$\left[\mathrm{Eu}(\mathrm{hfpc})_{3}\right]$ を用いると，鏡像異性体過剰率を直接測定することができる。また，薬禍事件で有名になっ た thalidomide には，催奇性を示す（S）－体と鎮静作用を示す（R）－体がある。

この thalidomideの PMR スペクトルが $\left[\mathrm{Eu}(\mathrm{fod})_{3}\right]$ と $\left[\mathrm{Eu}(\mathrm{hfpc})_{3}\right]$ を用いて $\mathrm{CD}_{3} \mathrm{CN}$ 中で測定されている ${ }^{15)}$ 。と くに，$\left[\mathrm{Eu}(\mathrm{hfpc})_{3}\right]$ を用いると，鏡像異性シフトの相違が メチンプロトン（NCH）に観察されることから，このシグ ナルによって（S）－体と（R）－体を直接定量することがで

きる。

サリドマイド
つぎに，tetra－p－tolylporphineの Ln 錯体について の研究がある ${ }^{16)}$ 。 $\operatorname{Ln}(\mathrm{III})(\mathrm{Ln}: \mathrm{Eu}, \mathrm{Yb})$ は図7に示したよ うに，4N－2Oによって六配位している。この錯体のSR としての挙動が讄べられている。

PMR スペクトルによると，Yb（III）錯体は Eu（III）錯体よりもポルフィン核のプロトンをいちじるしく低磁場側ヘシフトをせることがわかる。錯形成していない場合， アリル基における α 位の a と a^{\prime} ，さらに m 位のbと $\mathrm{b}^{\text {，}}$

のプロトンはそれぞれ等価であるが，錯形成するとポル
 て非等価になり，個々に分かれてあらわれる。また，Yb（III）付加錯体におけるdpm部分の t－butyl プロトンは Eu（III）付加錯体のそれよりも高磁場側へシフトしている。これ らのシフトはPSによるものである。この付加錯体のポ ルフィン核プロトンのPS 値を用いて，ポルフィン核平面から Ln（III）間ならびにポルフィン核のNからLn（III）間の結合距離が求められている。

また，$\left[\operatorname{Pr}(f o d)_{3}\right]$ を用いて N, N－dimethylformamide と N, N－dimethylacetoamide の PMRスペクトルが測定され， CH_{3} による LIS の観測から CH_{3} 基の立体配畳 を謌べた報告がある ${ }^{17)}$ 。

一方，${ }^{13} \mathrm{C}$ NMRスペクトルの研究として，ランタニ ド系錯体のSRを用いて水溶液中におけるL－lysineーラ ンタニド系の付加錯体の構造が調べられている ${ }^{18)}$ 。

（A）： $\mathrm{H}_{2}\left(\mathrm{p}-\mathrm{CH}_{3}\right) \mathrm{TPP}$
（B）： $\mathrm{Eu}\left(p-\mathrm{CH}_{3}\right) \mathrm{TPP}$（acac）
（C）： $\mathrm{Yb}\left(p-\mathrm{CH}_{3}\right) \mathrm{TPP}$（acac）
TPP：tetra－p－tolylporphine測定温度：$-21^{\circ} \mathrm{C}$ ，溶桇 ： $\mathrm{CHCl}_{3}-\mathrm{d}$

図7．テトラ－p－トルイルポルフィンとその金属錯体 のPMR スペクトル

6．おわりに

本稿では，主として β ージケトン類を配位子とした金属鉷体のSRについて述べた。このようなSRを用いて基質のNMRスペクトルを測定すると，${ }^{1} \mathrm{H}$ や ${ }^{13} \mathrm{C}$ のシグ ナルはいちじるしく高磁場側または低磁場側ヘシフトし て，重なりあったシグナルは個々に分かれるので，谷易 に舞属することができる。

このような NMR スペクトルから δ 値や J 値を求める

と，潅合物の定性や定量ができるので，分析手段の一つ として用いられる。また，各シグナルについてSRと基質のモル比を化学シフトに対してプロットした曲線（こ れをシフト曲線という）が直線であれば，生成した錯体 は一つであるが，曲線であれば，複数の錯体が生成して いることから，SRと基質が結合した付加錯体の構造を推定することができる。さらに，このシフト曲線の初め の直線部分の勾配から相対的な配位の強さやシフト能を

知ることができる。そのほかに，熱力学的パラメーター の測定などがおこなわれていて，種々の利用が期待され る。

引用文献

1）C．C．Hinckely，J．Am．Chem．Soc．，91， 5160 （1969）．
2）L．P．Lindoy，H．C．Lip，H．W．Louie，J．Chem．Soc．Chem． Commun．，1977， 1778.
3）T．J．Wenzel，T．C．Betters，J．E．Sodlowski，R．E．Sievers， J．Am．Chem．Soc．，102，5903（1980）．
4）J．T．Wenzel，Methods Stereochem．Anal．，5，151（1986）．
5）K．Tori，Y．Yoshimura，Tetrahedron Letter， 33,3127 （1973）．
6）H．P．Fritz，W．Gretner，H．J．Keller，K．E．Schwarzhans，Z． Naturforsch．，B25，174（1970）．
7）J．E．Maskasky，J．R．Mooney，M．E．kenney，J．Am．Chem． Soc．，94，2134（1972）．
8）G．P．Schiemenz，H．P．Hansen，Angew．Chem．，85， 404 （1973）．

9）R．E．Rondeau，R．E．Sievers，J．Am．Chem．Soc．，93， 1522 （1971）．
10）C．Alvarez，N．Goasdoue，N．Platzer，I．Rodriguez，H． Rudler，J．Chem．Soc．Commun．，1988， 1002.
11）M．Carol，R．Robert，Spectrosc．Lett．，20，899（1987）．
12）R．Robert，V．Kunisi，B．Shari，S．Kerry，T．Stacey， Spectrosc．Lett．，26， 271 （1993）．
13）R．Robert，B．Shari，T．Stacey，V．Kunisi，Spectrosc．Lett， 26, 411（1993）．
14）K．Lorraine，R．Robert，Spectrosc．Lett．，25，1177（1992）．
15）R．Rothchild，K．Sanders，K．S．Venkatasubban，Spectrosc． Lett．，26，597（1993）．
16）W．D．Horrocks，Ching－Ping Wong，J．Am．Chem．Soc．， 98 ， 7157（1976）．
17）J．A．Ladd，Magn．Reson．Chem．，27，483（1989）．
18）Wang Jianjun，Wang Xiaochun，Ouyang Yishan，You Yujian，Dai Anbang，Wuli Huaxue Xuebao，8，647（1992）．

新発売！！脱水ジエチルエーテル……水分含量 0.005% 以下！！新発売！！ 100 ml 包装…… 100 ml 包装品を追加致しました。

Cat．No．	製 品 名	令 品	小分令量	包 裴
$\begin{aligned} & 01837-05 \\ & 01837-95 \\ & \hline \end{aligned}$	Acetonitrile ${ }^{\text {a }}$ Dehydrated TセT	min． 99.5%	max．0．005\％	500 ml 3 L
$\begin{aligned} & 04978-05 \\ & 04978-95 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Benzene, Dehydrated } \\ & \text { ベンゼン (祳水) } \end{aligned}$	min． 99.5%	max． 0.003%	$\begin{gathered} 500 \mathrm{ml} \\ 3 \mathrm{~L} \end{gathered}$
$\begin{array}{r} 08097-05 \\ 08097-95 \\ \hline \end{array}$	※ 1 Chloroform，Dehydrated クロロホルム（脱水）	min． 99.5%	max． 0.003%	
$11338-05$ $11338-95$	※1 Dichloromethane， シタロロメダ脱水）	min． 99.5%	max． 0.003%	$\begin{aligned} & 500 \mathrm{ml} \\ & 3 \mathrm{~L} \end{aligned}$
14547－05	$\begin{aligned} & \text { Diethyl etherェ Dehydrated } \\ & \text { シェィエーテル (㫛水) } \end{aligned}$	min． 99.5%	max． 0.005%	500 ml
11339－05 $11339-95$ $11337-05$	N，N－Dimethylformamide，Dehydrated N，N－ジメチルホルムアミド（䏹水）	min． 99.5%	max． 0.005%	$\begin{array}{r} 500 \mathrm{ml} \\ 3 \mathrm{~L} \\ \hline \end{array}$
$\begin{array}{r}11337-05 \\ 11337-95 \\ \hline 1\end{array}$	$\begin{aligned} & \text { ※2 1, 4-Dioxane, Dehydrated } \\ & 1,4-シ ゙ ォ キ サ ン(\text { 脫水) } \end{aligned}$	min． 99.5%	max． 0.005%	$\begin{gathered} 500 \mathrm{ml} \\ 3 \mathrm{~L} \end{gathered}$
$\begin{array}{r} 14599-05 \\ 14599-95 \\ \hline \end{array}$	Ethanol，Dehydrated エタノール（脱水）	min． 99.5%	max． 0.005%	500 ml 3 L
$\begin{array}{r}18636-05 \\ 18636-95 \\ \hline\end{array}$	$\begin{aligned} & \text { Hexane, Dehydrated } \\ & \text { キサシン } \\ & \text { (脱永) } \end{aligned}$	min． 96.0%	max． 0.003%	$\begin{gathered} 500 \mathrm{ml} \\ 3 \mathrm{~L} \end{gathered}$
$\begin{array}{r} 40993-05 \\ 40993-95 \\ \hline \end{array}$		min． 99.5%	max． 0.005%	$\begin{gathered} 500 \mathrm{ml} \\ 3 \mathrm{~L} \end{gathered}$
$\begin{array}{r} 40500-05 \\ 40500-95 \\ \hline \end{array}$	Toluene，Dehydrated トルエン 䏹水）	min． 99.5%	max． 0.003%	$\begin{gathered} 500 \mathrm{ml} \\ 3 \mathrm{~L} \\ \hline \end{gathered}$

※ $1 \cdots$ stabilized with Amylene $※ 2 \cdots$ stabilized with BHT

くすりの文化交流（32）

地 球 の 真 理

西欧の東洋進出の執念

近世世界史の特筆すべき現象は，16世紀から17世紀に かけて，莫大な利潤をもたらす東洋留易の独占をねらう西欧諸国が，死線をさまよう海上権の制覇をめぐって， しのぎを削り，相次いで新航路を発見した。ちなみに古代の東西文化交流は，シルクロードの難路の踏破であった。

幼稚な航海術で，膨大な代償を投じ，先を争って東洋航路開拓の灵険に挑んだ最大の目的は，インドの胡椒 Pepper，肉桂 cinamon•cassia，尘漭ginger，モルッカ諸島の丁香 clobe，芮豆䞨 nutumeg などの東洋原産の香薬類を占有する野望の的であった。

コロンブスの胡椒の夢と不滅の功

今では＂香辛料＂spice として世界に普遍して実感がわ かないが，肉食を主とする中世のヨーロッパには，産出 しない希少䛧们から，莫大な利閵が得られた。必然的に地中海沿夋の筫多腰人にとって，一篧千金の夢につなが った。

周辺の王侯贵族も，自国の繁栄につながる稀少価値か ら，膨大な投資を要する新航路開発に，競って援助を㤨 しまなかった。

イタリヤの貿易商人コロンブスChristpher Columbus （1446～1506？）は，スペインのイサベラ女王の絶大な援助を受けた。 3 隻の帆船に多数の乗員を満載して，巨利を博するインド原産の第一目標の胡椒を始め，保寿を期街する初の東洋貿易に绹を躍らせて，インド航路の初航海の途に上った。

初めて大西洋を南下し，西進して上陸した地点をイン ドと直感した。時に1480年（頃），彼は40歳前後であった。裸の島民は言葉が通じないので，島内を入念に探索した が，目標の胡树は皆無の期待はずれで落胆も大きく，同行者のコロンブスへの反発が募った。彼は後から来航し たアメリゴ・ヴェスブッチが素早く登録したため，新大陸・アメリカ発見者の記録は譲ったが，コロンブスの名鲎は世界的に永遠である。

彼は3回の渡航で，アメリカ特産の帰国みやげは多彩

日本薬史学会 薬学博士 根 本 曽代子

に上っている。中でもタバコは，1世紀余りの間に地球 を一周した速度で，世界の人びとに愛好された。江戸時代にもその煙害から，幕府はしばしば＂禁煙＂の布令を出したが無視された。

コロンブスの新大陸みやげは多種多様にわたる。主な栽培植物は，筆頭のタバコのほか，コカ，トウガラシ，ト ウモロコシ，ジャガイモ，サツマイモ，ナンキンマメ， カボチャ，インゲンマメ，トマト，カカオ，パインアッ プル，イチゴなどが記録される。
伝説によると，ポルトガルの植民地，ブラジル駐在大使 Nicotが，インディアンがタバコの葉を，スリ傷やタ ダレの治療に使用しているのを知り，タバコを自国王室 に献上した。

18世紀半ば，スウェーデンの近代植物分類学の祖，リ ンネ Carl von Linneが，Nicotの功を記念して，タバコ の学名を，＂Nicociana tabacum L．＂と命名した。

東洋貿易の先取権

ポルトガルは東洋贸易の制覇をめぐって，スペインと しのぎを削っていた。コロンブスのアメリカ大陸発見に呼応して1497年，ヴァスコ・ダ・ガマVasco da Gama が， ポルトガル国王の特命を受けて 160 人を乗せた 4 隻の船団を率い，インド航路開発の初航海に出発した。

アフリカ大陸を迁回して翌年，インドの西海岸カリカ ットに上陸して，東洋貿易の先取権を独占した。航海中， 2 隻の船と 105 人の乗組員を失う痛手をこうむったが， それでもなおかつ，持ち归った薬物の莫大な利益が，損失を補って余りがあった。

ポルトガルは1510年，インド西海岸のゴアを占領して総督府をおき，東洋経営の拠点とした。セイロン，マラ ッカ，スマトラ，モルッカ諸島を次々に領有したが，偶然，暴風に流されたポルトガル船が，ブラジルに漂着し て，ブラジルの植民地政策の機縁となる。
天文12年（1543），種子島にポルトガル船が漂着して，鉄砲を伝来したことは歴史に明らかである。

近世史の序幕となる西洋との交渉の始まりであるが，

The Japanese Society of History of Pharmacy

島国日本が原始的生活を営む未開の国であったら，たち まち，前出の国々と同様の運命をたどったであろうこと は否定できない。

マゼランの世界一周航海の ききがけ

ポルトガル人マゼラン Ferdinand magellan は，ガマ の東方進出に同行した友人からヒントを得て，モルッカ に至る世界一周を企画した。

スペイン王室の支援を受けて，1519年，60トン余りの 5 隻の船団を列ねて，スペインを出帆した。大西洋を渡航して1520年，南米のマゼラン海峡（発見者の栄誉記名） の開発に寄与した。
太平洋を横断し，難航を重ねて1521年，フィリピンに到着した時は，船は 3 隻を失っていた。

マゼランが原住民に殺害されたので，同志のデル・カ ノが遺志をつぎ，セレベスとニューギニやの間に散在す るモルッカ諸島（香料諸島）のチドールを発見した。

時すでに1隻を失い，わずかに残った 1 隻に，丁香，胡椒，肉豆蔻などの黄重薬を満載して帰航の途についた。

インド洋を渡り，喜望峰を経て，1522年帰国して，世界一周航海の壮挙に先鞭をつけた。

これらの三者三様の地理学上の発見によって，競って広大な植民地を獲得したポルトガルとスペイン両国は，近世初期に世界を制䩱した富強国の地歩を築いた。その余勢を駆って，相次いで，ジパング日本に触手を伸ばし てきたのは，逃れ得ぬ地球上の地理的運命といえよう。

西洋医薬伝来と南䖝文化

事の起りは天文12年（1543）8月，暴風雨で針路を誤 ったポルトガル船が種子島に漂着して，船長が領主に鳥銃2挺を贈った。初めて鉄砲の偉力に憼いた領主は， 2千両を与えて入手し，技法を家臣に習わせた。
続いて天文18年（1549），宣教師フランシスコ・ザビエ ルが渡来して，キリスト教の布教を行なった。
翌天文19年，ポルトガル船が長崎平戸に来航して，交易を願い出た。領主は戦術に革命をもたらす鉄砲や薬種類と引き替えに許可するとともに，いわゆる南蛮貿易に発展した。

南䖵船は珍らしい貿易品と共に，バテレンと称した宣教師が多数渡来した。彼らは布教の手段として，諸侯に珍奇な時計，楽器，眼鏡，ガラス，珍陀洒（ブドウ酒） などを献上する一方，医薬の素養のある者は，治療に従事して歓心を買い，布教の手段に努めた。
豊後国（大分県）の領主，大友宗麟は，弘治 2 年（1556），領内に初めて洋式病院を創設して，ポルトガル人・アル メイダが診療を開始した。この年をもって，＂西洋医薬伝来＂の起原としている。

洋種薬草栽培ルーツ

鉄砲を最大限に使って，国内統一に寄与して，最初の覃者となった織田信長は，一向宗徒の根強い反発に対し て，バテレンの要請に応じて，キリスト教に保護を与え た。

京都と本拠の安土城下にキリスト教（伆支采）学校や南蛮寺の建設を許した。南蚠寺には親にも見捨てられて路頭に迷う痢患者や貧しい病人を収容して救済した。

信長はさらに江州伊吹山の50町四方の土地を与えたの で，薬園を開設し，ポルトガルから3千種に及ぶという多数の薬草を移植して，治療薬の自給をはかった。これ が西洋種の薬草栽培の草分けで，伊吹モグサ，イブキジ ャコウソウなどが，伝来のルーツを偲ばせる。

医療は南蜜流が当時の初歩の西洋流医承であったが，戦乱による負傷の応急手当に力を入れた。育薬類や軟髙 が重視された。

このほか，南蚠渡来の薬種としては，胡椒，丁香，砂糖，ミイラ，ウニコウル，シャボン（石鹸），タバコなど があげられる。

胡椒，丁香，砂糖は，正倉院薬物（756）の記録に明記 される。

南蛮文化の影響

南蛮贸易は，寛永10年（1633）の銷国令で打ち切られ るまで，約90年間継続した。その間，南蚠文化が日本人 の生活に浸透したのは，宣教師が全国的に布教活動の輪 を広げ，積極的に諸侯をはじめ，民衆に親しく接触して，精神面だけでなく，異国の医薬や技術や風習を伝えるな ど，文化面での寄与を見のがせない。

その証拠に，今日でもポルトガル語に由来している言葉が，多少のずれはあっても定着して，南蛮文化の遺風 を偲ばせる。

たとえば，食品類では，パン Pāo，カステラ castel， ビスカウト biscouto（ビスケット），カルメラ calmela， アルヘイ糖 alfeitoa，金平糖などで，葉子類の製法も， もっぱら宣教師が伝授したという。

衣料関係では，ラシャ raxa，ビロード veludo，ジバン （襦袢）giban，合羽capa，サラサ（更紗）saraca，メリヤス meias，ボタン botāoなどが，日常何げなく使われている。 ラシャは武将の陣羽織などに好んで使用された。

ビードロ vidro（ガラス）で作ったギヤマンなどは，宣教師が諸侯に贈って喜ばれる高級品であった。ギヤマン はガラスに切子細工を施した装飾品で，フラスコは酒や油類の容器として渡来した。

ビードロの製法は，元亀元年（1570），長崎領主大村純忠（切支丹名，ドン・バルメロトウ）が，長崎港を贸易

港としたとき，ポルトガルから来たビードロ工が伝えた といわれる。

この開港も宣教師の要望によるもので，彼らは布教の手段として，医療のほか，出版物を発行するため，印刷機を輸入して，印刷技術を教えるなど，文化面に寄与す る一方，産業の開発にも一役買った。

佐渡の金山の産金額が非常に増大したのも，彼らの指導によって，金の産出方法が改良され，慶長大判金，小判金が大量に鋳造されたといわれる。

その間にも布教活動が続けられた。諸大名をはじめ，洗礼を受ける信者が急増した。

豊臣雱吉は彼らの領土的野心を恐れて，天正17年， （1589）キリスト教を禁止し，京都のやソ会寺院を焼き払 った。信者の処刑も相次いだ。
1602年頃，宣教師がポルトガル本国に報告した日本全国の信者は，70万以上と伝えている。

鎖国の必然性

徳川家康もキリスト教を禁止したが，外国貿易は大い に奨励した。ところが，慶長17年（1612）オランダ国王 から家康に，ポルトガルの日本侵略の密書によって，徳川幕府はキリスト教弾圧を強行すると共に，銷国の方針に切り替えることになった。

段階的に準備を進めて，寛永12年（1635）の3度目の鎖国令で，日本船の海外渡航を禁止した。翌年の鎖国令 では，長崳办衍所螬の海岸埋立地に，4千坪の扇形の出島に南窵的を建沙して，ポルトガル人を収容した。

三代将队鿉川家光は，䆓永16年（1639）最後の鎖国令 で，キリスト教徒のボルトガル人を追放した。キリスト教に無関係のオランダと日爛貿易を開き，出島を赼点と した。

清国は旧称の日唐貿易を継続した。輸入薬種の中では，当時，薬種の砂糖の輸入が筆頭で，人参，厚朴，犀角，熊胆，荿荷，芶薬等も，諸事節約のため，唐船の入港も 70隻に制限された。

円山応挙 画 畏崎港 出島 寬政 4 年

出島のオランダ商館には，商館長と医師のほか，商觟員が常駐していた。商取引は，長崎奉行所役人の厳重な監視の下で，日本商人とオランダ商館員との間で，入札形式で行われた。入札の権利を持っていたのは，長崎，大阪，江戸，京都，堺の商人で，落札した輸入薬種は， すべて大阪に送られ，一定の手続を経て市場に出された。

オランタ貿易も初期には年間 $6 \sim 7$ 隻も来航して，利益も潤沢であったが，17世紀末にはバタビヤのオランダ東インド会社が不振であった。
元椂 3 年（1690），東インド会社から派遣された医師， エンゲルト・ケンペル著「日本誌」によると，当時の貿易額は 30 万兩と定められた上， 15% の関税がかけられる ので，正味 25 万 5 千両の売上高となる。

オランダ船の商品の中で売上の多いのは，シナ製の絹織物や，オランダ，イギリス製の毛織物のほか，薬種は朱，丁香，胡椒，阿仙薬などで，規定の売上額を超える と，役人が封印をして，オランダ商館の倉庫に没収して しまうので，抜け荷（密貿易）が跡を絶たなかった。発覚すれば，容赦なく斬首刑に処せられる。税引きの売上高 25 万 5 千両の大半は，日本産銅の買入に当てられた。

〈編集後記〉

$\diamond 1$ 月17日早朝に発生した阪神大震災から2ヵ月余が過 ぎました。被災されました皆様に対しまして改めて心よ りお見舞申し上げますと共に，一日も早く複旧されます ようお祈り申し上げます。

○さて，ケミカルタイムス156号をお届けします。本号には新たに瀧先生の＂新しい指質研究を拓く TLC Blotting＂ をはじめ，今井先生，佐々木先生，根本先生よりの興味 あるお話を掲載させていただきました。諾先生方には厚 くお礼申し上げます。
（山田記）

Anniversary

おかげさまで50年

技術な駆使して明日への創造 $\boldsymbol{2}$ E


```
ここまで歩んてくることができました。
これからも, 㫮柱とのまずなをより深め, 次人の時代へ向
けて力弶く突き雔んでいく觉㥓です。
```


50年の歩み」

1944－11		1982－2	大准日泫に大れ日工楜を新設。
	水衤式金杜を設立。	1982． 5	
1945－10			
1949． 6			力筀足。
1949．9		1984． 2	
1950． 3	各刊「ヶミカルタイムス」を佬行。		
1953．9		198	
		1989．9	オレエン䙵がートラン
	が，全匡各地のせ物に仙阳された。		リカ你佫所き詸战。
1959．7		1990．6	
			Kanto Corporationを敌立。
1960－10		1991．10	
			榇（MKAC＝メルクーカントーブ，
	に校み込まれた。		バンストヶミカル）を設立。
1966－4		1992－11	
	极格老示。		
1968． 6	本社社星斱聚萑皮。	1992－12	
1872.4			完凂。
1972．5		1993． 3	
	付け「キッフオフ大会」を限瑗。		泼近と生涼に网市る5力年計两の
1972．8			整僻を究 f
	巭源工域建就者工。	1993－12	
1973． 9			
1977．6			㨙宥火。
	祭落成。	1994． 6	オレコン州ボートランド市に工坆
1979．9			閶地を取得。
1980． 3	E・メルク社との切缹を著表。	1994．10	箊に坞において，品質システム
1981． 9			ISO 9001廷硅取兆。

[^0]: 1．血清 glucose 值正常で尿相伤性：
 （1）觜性糖尿
 （2）尿細管上皮隡害一重金属（ $\mathrm{Cd}, \mathrm{Hg}_{\mathrm{g}}, \mathrm{Pd}, \mathrm{Cr}$ ，等）の過剩拱取；ビタミンD過剩；焣炎，ネフローゼ，腎硬化症， Fanconi 症候群等の腎疾思

