高原子価コバルト触媒によるC-H官能基化反応

High Valent Cobalt-Catalyzed C-H Functionalization

北海道大学大学院薬学研究院教授 松永 茂樹 Shigeki Matsunaga, PhD (Professor)

Faculty of Pharmaceutical Sciences, Hokkaido University

北海道大学大学院薬学研究院 講師 **吉野 達彦** Tatsuhiko Yoshino, PhD (Lecturer) Faculty of Pharmaceutical Sciences, Hokkaido University

キーワード

コバルト触媒、C-H活性化、不斉C-H官能基化

01 はじめに

遷移金属触媒、カルベン種、ラジカル活性種などを用いて、 通常の合成反応条件では不活性な有機分子中の炭素-水素結 合を直接官能基化する手法は、広い意味でC-H官能基化反応と 総称される。複雑な構造を有する化合物の多段階合成におけ るステップエコノミー、アトムエコノミーの改善への貢献を目指 した研究が盛んに行われている。中でも、遷移金属触媒を用い てC-H結合を切断し炭素-金属結合を有する活性中間体を経 由する反応は、C-H活性化反応と呼ばれる。多種多彩な新しい 触媒の開発が進み、狙った位置の炭素-水素結合を高い位置 選択性で活性化する手法、エナンチオ制御を実現する手法の開 発にまで研究が進んでいる。我々は、酸-塩基協同機能触媒を 利用した触媒的不斉炭素ー炭素結合形成反応に長年取組んで おり、直接的なMannich型反応など求核的活性種の極性官能 基(イミン、エノン、アルデヒド等)への付加反応に興味を持って 研究を行ってきた¹⁾。C-H活性化に有効な遷移金属触媒を利用 して求核的活性種を発生させ、イミン等への付加反応を実施で きないだろうか。さらには、その立体制御まで実現できないだろ うか。これが、我々がC-H官能基化の分野に飛び込む最初の動 機であった。

様々な金属触媒がC-H活性化に利用される中で、ペンタメチ ルシクロペンタジエニル(Cp*)配位子を有するCp*Rh(III)錯体 は、水や空気に安定で取り扱いが容易であると同時に、優れた 触媒活性と官能基許容性を有する。合成化学者にとって非常に 魅力的な触媒であり、三浦、佐藤らの先駆的な報告以降、多くの 研究者がCp*Rh(III)錯体およびCp*Ir(III)錯体を利用した数々 のC-H官能基化反応を報告している²⁰。このような背景のもと、 我々は極性官能基との反応が念頭にあったためロジウムと同 族のコバルトに着目した。コバルトは同族のロジウムと比較し、 イオン半径および電気陰性度が小さい(図1)。すなわち、3価の コバルト種はいわゆる"硬い酸"と捉えることができる。この性 質をうまく活かせば、極性官能基との付加型の反応において、 ロジウム触媒やイリジウム触媒とは違った研究展開ができるの ではないかと考えた。本稿では、我々が開発したCp*Co(III)触 媒について、ロジウム触媒と比較し(1)ルイス酸性が高い、(2) イオン半径が小さい、(3)酸素親和性が高いというコバルト触 媒の特徴を活かした応用例に絞って紹介したい。2013年の初 報³¹以降、多くの研究者が3価のコバルト触媒を利用したC-H官 能基化反応の開発研究に参画し膨大な反応例が報告されてい るが、誌面の都合上、詳細については総説^{4)、5)、6)}を参照してほし い。

図1 コバルトとロジウムの基本的性質の比較

02 高原子価コバルト触媒

我々が研究を開始した2012年時点において、低原子価コバ ルト種を利用したC-H活性化が既に報告されており、吉戒、中 村、Ackermannをはじめとした研究グループにより精力的に 研究が進められていた⁷。一方、3価のコバルト錯体によるC-H 活性化は量論反応の報告があるのみで触媒的なC-H活性化は なかった。我々の2013年の報告を皮切りにこれまでにいくつ かのCp*Co(III)錯体が3価のカチオン性コバルト活性種の発生 に利用できることが知られている。その代表的なものを図2に 示す。カチオン性ベンゼン錯体1a, 1bは初期の研究で使用さ れ3.8、原料と混ぜて加熱するだけで配位子交換が進むため銀 塩等の添加剤を加える必要がない点で優れている。しかしなが ら、錯体調製上の問題から使用できる対アニオンが限定されて おり、アニオンの分解に伴う失活などが問題となる場合があっ た。そこで触媒前駆体について改めて検討したところ、簡便に 合成可能で取り扱いも容易なCp*Co(CO)」2錯体1c ⁹および [Cp*Col2]2錯体1d¹⁰⁾が有効であることを見いだした。ヨウ素 錯体1cや1dを反応容器中で様々な銀塩と混合することで、簡 便にカチオン性のCp*Co(III)活性種を発生させることができる ため、ヨウ素錯体を前駆体として使用する研究が主流となって いる。なお、ヨウ素錯体1c中の一酸化炭素は、電子不足なカチ オン性のコバルト種からは速やかに解離するため、触媒活性を 阻害することはない。また、アセトニトリル中でAgSbF。と混合 することで簡便に調製可能な[Cp*Co(CH₃CN)₃] [SbF₆]2錯体 1e¹¹⁾もよく利用されている。

Image: Second system コバルト触媒の特性を活かした C-H官能基化

初期の研究では、コバルト触媒のC-H活性化能を評価する ためにロジウム触媒で既に知られている反応に適用して反応 性の比較検討を行ったが、極性官能基への付加反応は概ね良 好な結果を与えた。例えば、ピリミジル基を配向基としたイン ドールのC2位選択的な活性化を経るイミンへの付加反応は 問題無く進行し、触媒量0.5 mol%でも高い収率にて進行した (図3)¹²⁾。本反応はロジウム触媒でも進行するが、触媒効率と いう点でコバルト触媒の方が優れていた。なお、ピリミジル保 護インドールのC2位選択的なC-H活性化には添加剤として酢 酸カリウムが必須であった。H/D交換実験から、酢酸カリウム を加えない場合にはインドールの通常の電子的性質に沿った C3位での反応が優先してしまうことが示唆された。カルボン 酸塩を塩基とする協奏的メタル化脱プロトン化(Concerted Metallation-Deprotonation, CMD)機構でC2位選択的な C-H活性化が進行していると推定している。

初期検討結果を踏まえ、次にコバルト触媒ならではの反応開発に移行した。カルバモイル基で保護されたインドールのC-Hアルケニル化を行ったところ、反応条件によってはロジウム触媒とは異なる生成物が得られることがわかった。高濃度条件(0.5 M)ではロジウム触媒と同じC-Hアルケニル化体が得られるのに対し(図4a)、希釈条件で反応を行うとロジウム触媒では得られない生成物が得られた。反応温度100 °Cでは配向基が転移した四置換アルケンが得られ(図4b)¹³、130 °C以上の高温条件では環化体のみが得られた(図4c)¹⁴⁾。反応機構は図5のように考えている。まずCMD機構によるインドールC2位選択

THE CHEMICAL TIMES

的なC-H活性化とアルキンの挿入を経てアルケニルコバルト 中間体Iが生じる。反応濃度の違いにより、経路(a)酢酸による分 子間プロトン化を経てアルケニル化体を与える、または、経路 (b)分子内求核攻撃が進行し中間体IIを与える。100°Cでは中 間体IIからインドールが脱離基として働く速度論的に有利な転 移体が得られ、高温条件では熱力学的に有利な環化体が得ら れたと考えている¹⁵⁾。高温条件では転移体が環化体に変換され ることが確認された。なお、ロジウム触媒を用いた場合には、プ ロトン化を経てアルケニル化体を与える経路(a)のみが進行し、 転移体や環化体は一切得られなかった。コバルト触媒はロジウ ム触媒よりもルイス酸性が高く、さらに、金属-炭素結合の分極 も大きいことからカルバモイル基のような求電子性の低い官 能基とも反応したものと考えている。

コバルトとロジウムのイオン半径の違いを利用すると反応 の位置選択性についても顕著な違いが見られる場合がある。 例えば、オキシム誘導体とアルキンとの環化によるイソキノリ ン合成¹⁶において位置選択性の違いが確認された(図6)。すな わち、メタ位にCL基等の比較的小さな置換基を有するオキシム 誘導体を用いた場合、ロジウム触媒では位置選択性が1:1.3と 発現しないのに対し、コバルト触媒では立体障害を避けた位置 で17:1という高い選択性にて反応が進行した。この位置選択 性の違いはコバルトとロジウムのイオン半径の違いに起因して いると考えている。すなわち、コバルトのイオン半径が小さい ため、コバルトとかさ高いCp*基の距離が近い。その結果、メタ ラサイクル形成段階においてメタ位置換基とCp*基との立体 反発の影響が出やすく、比較的小さな置換基の場合でも高い 位置選択性が発現したと考えている。また、末端アルキンを用 いてもアルキン同士の副反応はおこらず、望みのイソキノリン が効率よく得られる点もコバルト触媒の特徴である。非対称ピ ロールの位置選択性を示すことがわかった。ピロールのア ルケニル化反応では、モノアルケニル化体が高収率で得られる 点も他の触媒とは異なる特徴である。

コバルト触媒を利用するとアリルアルコールを直接用いた C-Hアリル化が進行する(図7)。アリルアルコールのγ位で選択 的に反応が進行すること、および、DFT計算の結果から、二重結

(a)アルケニル化; (b)アルケニル化/配向基転移; (c)アルケニル化/環化

図5 Cp*Co(III)触媒による反応機構

THE CHEMICAL TIMES

合の挿入により生じる中間体Iからβ-OH脱離を経てアリル化体 が得られると考えている。ロジウム触媒では、アリルアルコール を用いるとβ-H脱離が優先しエノールを経てアルデヒドが得ら れるのに対し¹⁸、3価コバルトの高い酸素親和性のためにβ-OH 脱離が優先する。インドール¹⁹、ピロール、6-アリールプリン²⁰、 アミド、Weinrebアミド²¹など様々な基質が適用可能である。 また、含フッ素アルケンとの反応では、類似のβ-フッ素脱離が進 行することでフルオロアリケンやパーフルオロアリル化体が得 られた²²(図8)。

特集

図8 β-フッ素脱離を経るC-Hフルオロアルケニル化 およびパーフルオロアリル化

04 不斉C-H官能基化への展開

次に研究開始当初から念頭にあった不斉C-H官能基化に取 組んだ。キラルなシクロペンタジエニル配位子Cp*を組み込ん だキラルCp*Rh錯体やCp*Ir錯体による不斉C-H官能基化が Cramerや他の研究者により研究されている²³。一方、我々はア キラルで入手容易なCp*M(III)(M = Co, Rh, Ir)を用い、キラ ルスルホン酸²⁴やキラルカルボン酸²⁵⁾と組み合わせることで立 体制御を実現する戦略を取っている。

パラジウム触媒反応では、Yuらを中心としてキラルカルボン 酸によってエナンチオトピックな水素を識別する手法が長年研 究されてきている20。一方、高原子価第9族金属を用いる場合 には、パラジウムと同じキラルカルボン酸は有効ではない。キラ ルカルボキシラートが関与するCMD機構でのC-H結合活性化 において、Pd(II)とCp*M(III)(M = Co, Rh, Ir)では使用可能 な配位場の数や配位様式が異なるためである。そのため、高原 子価第9族金属に適したキラルカルボン酸の探索が必要であっ た。Cp*Rh(III)を用いた場合には、ビナフチル骨格をもとに精 密に設計したモノカルボン酸25)を利用する必要があったのに対 し、コバルト触媒では比較的単純でアミノ酸より容易に大量合 成可能なカルボン酸でも十分な立体識別が可能であった。速 度論支配で立体選択性を発現するためにはC-H活性化段階が 不可逆的である必要があることを考慮し、Dixon, Seayadらに よりラセミ反応が開発されたチオアミドのβ位C(sp³)-Hアミド 化反応27)を標的として選択した。検討の結果、tert-ロイシンから 誘導したキラルカルボン酸が有効であり、触媒Cp部に一つtBu 基を導入したコバルト触媒1fを用いることでCp*Co錯体1eと 比較して選択性が向上した。チオアミドのエナンチオトピック な2つのメチル基上のC-H結合を識別したC-H活性化を経て、 C-Hアミド化体が最高94:6 erのエナンチオ選択性で得られた (図9)28。本反応で得られる生成物中のチオアミド基は、アミ ド、アミン、アルデヒドへと変換可能であり、不斉四級炭素を有 するキラルβ-アミノカルボニル合成素子として有用である。

図9 アキラルCo(III)触媒とキラルカルボン酸の組み合わせによる 不斉C(sp³)-H官能基化

05 今後の展開

以上のように、コバルト触媒の特性を活かすことで特徴的な C-H官能基化反応を実現することができた。Cp*Co触媒を利用 したC-H官能基化は過去5年間で150例以上の応用例が報告 され、世界中の研究者により利用されるようになってきている。 活性種前駆体であるCp*Co(CO)I2錯体1cも市販化され、今 後、ますます応用が広がっていくと期待される。ロジウムの単純 な代替にとどまらない独自の反応開発が期待される。しかしな がらロジウム触媒やイリジウム触媒と比較し、まだ改良余地が 多々残されているのも事実である。今後の改良が望まれる点と しては、(i)外部酸化剤を利用した酸化的な化学変換への応用 例が限定的であること、(ii) C(sp³)-H結合のC-H活性化に適用 可能な基質が限定的であること、(iii)エナンチオ制御を実現す る方法論が発展途上であることなどがある。Cp部の修飾によ る欠点の克服と反応性の向上、新規キラルカルボン酸やスルホ ン酸の分子設計による高度な立体制御の実現などに注力して いきたいと考えている。

参考文献

- S. Matsunaga, M. Shibasaki, *Chem. Commun.* **50**(9), 1044-1057 (2014).
- 2) T. Satoh, M. Miura, *Chem. Eur. J.* **16**(37), 11212-11222 (2010).
- T. Yoshino, H. Ikemoto, S. Matsunaga, M. Kanai, *Angew. Chem. Int. Ed.* 52(8), 2207-2211 (2013).
- T. Yoshino, S. Matsunaga, Adv. Synth. Catal. 359(8), 1245-1262 (2017).
- 5) T. Yoshino, S. Matsunaga, *Adv. Organomet. Chem.* **68**, 197-247 (2017).
- 6) Y. Kommagalla, N. Chatani, *Coord Chem Rev* **350**, 117-135 (2017).
- 7) K. Gao, N. Yoshikai, Acc. Chem. Res. 47(4), 1208-1219 (2014).
- 8) J. R. Hummel, J. A. Ellman, J. Am. Chem. Soc, 137(1), 490-498 (2015).
- B. Sun, T. Yoshino, S. Matsunaga, M. Kanai, *Adv. Synth. Catal.* 356(7), 1491-1495 (2014).
- B. Sun, T. Yoshino, S. Matsunaga, M. Kanai, *Chem. Commun.* 51(22), 4659-4661 (2015).
- D.-G. Yu, T. Gensch, F. de Azambuja, S. Vásquez-Céspedes, F. Glorius, J. Am. Chem. Soc. 136(51), 17722-17725 (2014).
- 12) T. Yoshino, H. Ikemoto, S. Matsunaga, M. Kanai, *Chem. Eur. J.* **19**(28), 9142-9146 (2013).
- 13) H. Ikemoto, R. Tanaka, K. Sakata, M. Kanai, T. Yoshino, S. Matsunaga, *Angew. Chem. Int. Ed.* 56(25), 7156-7160 (2017).
- 14) H. Ikemoto, T. Yoshino, K. Sakata, S. Matsunaga, M. Kanai, J. Am. Chem. Soc. 136(14), 5424-5431 (2014).
- 15) K. Sakata, M. Eda, Y. Kitaoka, T. Yoshino, S. Matsunaga, J. Org. Chem. 82(14), 7379-7387 (2017).
- 16) B. Sun, T. Yoshino, M. Kanai, S. Matsunaga, *Angew. Chem. Int. Ed.* 54(34), 12968-12972 (2015).
- 17) R. Tanaka, H. Ikemoto, M. Kanai, T. Yoshino, S. Matsunaga, *Org. Lett.* 18(21), 5732-5735 (2016).
- 18) Z. Shi, M. Boultadakis-Arapinis, F. Glorius, *Chem. Commun.* 49(58), 6489-6491 (2013).
- 19) Y. Suzuki, B. Sun, K. Sakata, T. Yoshino, S. Matsunaga, M. Kanai, *Angew. Chem. Int. Ed.* 54(34), 9944-9947 (2015).
- 20) Y. Bunno, N. Murakami, Y. Suzuki, M. Kanai, T. Yoshino, S. Matsunaga, Org. Lett. 18(9), 2216-2219 (2016).
- 21) K. Kawai, Y. Bunno, T. Yoshino, S. Matsunaga, *Chem. Eur. J.* 24(40), 10231-10237 (2018).
- 22) N. Murakami, M. Yoshida, T. Yoshino, S. Matsunaga, *Chem. Pharm. Bull.* **66**(1), 51-54 (2018).
- 23) B. Ye, N. Cramer, Acc. Chem. Res. 48(5), 1308-1318 (2015).
- 24) S. Satake, T. Kurihara, K. Nishikawa, T. Mochizuki, M. Hatano, K. Ishihara, T. Yoshino, S. Matsunaga, *Nat Catal* 1(8), 585-591 (2018).
- 25) L. Lin, S. Fukagawa, D. Sekine, E. Tomita, T. Yoshino, S. Matsunaga, Angew. Chem. Int. Ed. 57 (37), 12048-12052, (2018).
- 26) J. He, M. Wasa, K. S. L. Chan, Q. Shao, J.-Q. Yu, *Chem. Rev.* 117(13), 8754-8786 (2017).
- 27) P. W. Tan, A. M. Mak, M. B. Sullivan, D. J. Dixon, J. Seayad, *Angew. Chem. Int. Ed.* **56**(52), 16550-16554 (2017).
- 28) S. Fukagawa, Y. Kato, R. Tanaka, M. Kojima, T. Yoshino, S. Matsunaga, Angew. Chem. Int. Ed. 58(4), 1153-1157 (2019).