
01はじめに

2022年10月に発表されたノーベル化学賞は、様々な分子の
連結を可能とする「クリックケミストリー」と呼ばれる手法の開発
に携わった欧米の研究者3名へ贈られたことは記憶に新しい。
特にその中の米国スクリプス研究所K. Barry Sharpless教授
は2001年に「キラル触媒による不斉合成の研究」により、1度目
のノーベル化学賞を受賞しており、今回が2回目の受賞である。
そのSharpless教授によって、2種類の官能基間で起こる選択
的かつシンプルなヘテロ原子を介した結合形成反応の総称とし
て、1度目のノーベル化学賞受賞年の2001年に「クリックケミ
ストリー」の概念が提唱された1)。その中で最も代表的な反応は
アジドとアルキンによるトリアゾール化反応であることは広く認
知されている。トリアゾール化反応の歴史を遡ると、1世紀以上
前の1893年にマイケル付加反応で有名なA. Michael教授に
よって初めての報告がなされている2)。その後、半世紀以上を経

てR. Huisgen教授らによる詳細な研究が行われ3, 4)、現在では
一般にHuisgen’s 1,3-dipolar cycloadditionと呼ばれている
（図1上部）。
Huisgen’s 1,3-dipolar cycloadditionは加熱条件で協奏的

に進行する付加環化反応で、非対称なアルキン化合物を用いた
場合、2種類の異性体を与える。その選択性の制御は難しく、一
般的に2種類の混合物が得られる。また、歪みアルキンを用いる
ことでその反応性が飛躍的に向上し、生理学的条件下で速やか
に本反応が進行するが、その詳細な解説は本誌別稿を参照され
たい。
2002年にSharpless教授とMeldal教授の2グループから

金属触媒によるトリアゾール形成反応がほぼ同時に報告され
た（図1下部）5, 6)。両報告は末端アルキンと有機アジドを用いた
トリアゾール化においてCu(I)触媒によるanti-トリアゾール形
成（1,4-二置換トリアゾール）の反応促進効果の発見であり、
現在では一般的にCuAAC [Cu(I) catalyzed Azide-Alkyne 
Cycloaddition] として表記される。本報告を皮切りに「クリッ
クケミストリー」が飛躍的に利用されるようになったといえる。
CuAACはHuisgen’s 1, 3-dipolar cycloadditionの協奏的付
加環化反応とは異なり、銅アセチリドからの段階的な機構でanti-
トリアゾールを与える7)。さらに2005年にRu(II)触媒によるsyn-
選択的トリアゾール化（RuAAC）がSharpless教授のグループか
ら報告され8)、これにより、金属触媒によるanti（1,4-二置換トリア
ゾール）およびsyn（1,5-二置換トリアゾール）異性体の選択的な
合成が可能となっている。
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図1 有機アジドとアルキンのトリアゾール形成
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02In situ クリックケミストリー

「In situ  クリックケミストリー」は2002年にSharpless教
授によってその概念と実際の研究例が報告されており、前述
した「クリックケミストリー」の中でHuisgen’s 1,3-dipolar 
cycloaddition（以下、Huisgen反応）を用いる手法である9, 10)。　
“In situ”とは「生体分子（酵素など）の中で」という意味である。す
なわち、in situ クリックケミストリーとはHuisgen反応を利用し
て、標的酵素のリガンド（阻害剤）作用部位を反応場として、様々
なフラグメント基質 [(有機アジドとアルキン分子；どちらかがリガ
ンド分子）図中ではリガンド分子にアルキン官能基を導入] を添
加した時、それらがリガンド作用部位周辺に親和性を有する時、
標的酵素のテンプレート（鋳型）効果によりトリアゾール形成が
促進されることを指標に、より高活性な阻害剤を探索する方法論
である（図2）。図中では始めに標的酵素の活性部位にリガンド分
子（アルキン分子）が結合する。次にフラグメント分子であるF1
アジドが結合した場合では、F1は標的酵素に対して親和性を有
しているが、その結合位置はリガンド分子と離れているため、トリ
アゾール化反応促進の駆動力にならない。F2アジドは標的酵素
に対して親和性が低いことから、標的酵素が鋳型として機能しな
い。F3アジドは、リガンド分子の近傍に親和性を有することからト

リアゾール形成促進効果を引き起こし、誘導されたトリアゾール
体は元のリガンド分子に比べ標的酵素への親和性が向上する。
本手法はダイナミックに動いている標的酵素が鋳型となるため、
静的な構造情報からのリガンドデザインと比べ予期せぬヒット化
合物の発見が期待できる。
ここでなぜin situ  クリックケミストリーにおいてHuisgen反
応の利用が有効かについてだが、有機アジトとアルキンとの環
化反応は官能基選択性が高く、さらに水性緩衝液中においても
無機塩や有機物などの干渉を受けず、また生体成分との反応も
起こさない。さらにHuisgen反応は反応基質以外の試薬を必要
とせず、反応進行に伴う副生成物も一切生成しない。それに加え
てHuisgen反応のアジド-アルキン間のトリアゾール形成は26 
kcal/molという適度な反応活性化エネルギー障壁のため、室温
〜酵素反応至適温度（〜37 oC）条件で混合しても殆ど反応が進
行しないのが特徴である11)。この点が非常に重要となる。In situ 
クリックケミストリーでは標的酵素鋳型効果により導かれるトリ
アゾール生成物の変換率は一般的な有機合成化学から想像する
よりはるかに低い。例えばトリアゾール形成促進効果により、変
換率として0.1％程度のトリアゾール化合物が生成したと仮定し
た場合、Huisgen反応が酵素鋳型効果を介さずに1％進行してし
まうと、酵素鋳型効果によるトリアゾール形成促進効果はバック
グランド反応に埋もれてしまう。Huisgen反応は酵素反応至適温

図2 In situ クリックケミストリーのイメージ
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度（〜37 oC）条件では反応が殆ど進行しないことがin situ クリッ
クケミストリーへの適応において重要な要素の一つである。
In situ  クリックケミストリーの初めての報告は2002年に
Sharpless教授のグループから報告されている（図3）10)。
その標的酵素は神経伝達物質であるアセチルコリンを酢酸

とコリンに加水分解するアセチルコリンエステラーゼ(AChE)
であり、その阻害剤は、アルツハイマー病などの治療薬として展
開されている。AChEは、触媒部位とポケット入口の二つの阻害
剤結合が知られており、それら結合部位は20 Åとお互い近傍
に存在する。また、特異的に相互作用する阻害剤tacrineは触媒
部位の阻害剤でKd = 18 nMと強力な結合親和性を有し、一方
propidiumはポケット入口部位にKd = 1.1 μMで結合親和性
を有する。Sharpless教授らはtacrineとpropidiumの窒素上に
それぞれ炭素鎖長の異なる末端アルキン-アルキル基およびアジ
ド-アルキル基を導入した。そしてAChE存在下でそれらを混合し
たところ図3右側に示すトリアゾール体がその前駆体となるアジ
ドとアルキンからAChE鋳型効果により選択的に誘導されること
を見出した。そのトリアゾール体のAChEに対する阻害活性は非
常に強力（Kd = 99 fM）であり、本結果はin situ クリックケミス
トリーの概念を具現化している。
その他にもin situ  クリックケミストリーは、Sharpless教授

のグループを中心に精力的に研究が展開されており、炭酸脱
水酵素12-15), プロテインチロシンフォスファターゼ16)、金属プ
ロテアーゼ17, 18)、HIV-1プロテアーゼ19)、セラチアキチナーゼ
(SmChi) 20-22)、結核菌のEthRタンパク質23)、Akt124)、アセチルコ
リン結合タンパク質25)、G-Quadruplex 26)、ビオチンタンパク質
リガーゼ27) および、シクロオキシゲナーゼ228)を標的とした新規
阻害剤の探索が報告されている。

03北里大学大村智記念研究所における
in situ クリックケミストリーの展開

当研究所ではSharpless教授と徳島大学疾患酵素学研究セン
ター（現・徳島大学先端酵素学研究所）との連携でin situ クリッ
クケミストリーを展開してきた。

3-1.キチナーゼ阻害剤の探索
2009年に、バクテリアの糖加水分解酵素の1種であるセラチ

アキチナーゼ（SmChi）を用いたin situ クリックケミストリーの
研究を報告した20-22)。本研究では当研究室で見出された天然物
Argifinからin situ クリックケミストリーに利用可能なアジドリガ
ンド分子の設計および合成を行い、そのアジドリガンドと71種
のアルキンフラグメントを用いてSmChi 存在下、in situ クリッ
クケミストリーのスクリーニングを行うことで、Argifinに比べ約
300倍活性向上した阻害剤の創製に成功した。尚、本研究成果は
これまで多くの書籍等29-33)で紹介してきたので、本稿ではその詳
細は割愛させていただく。

3-2.ヒトD-アミノ酸酸化酵素阻害剤の探索
3-2-1. D-アミノ酸酸化酵素
ヒトD-アミノ酸酸化酵素（human D-amino acid oxidase, 
hDAO）は、統合失調症との関連が示唆されている。哺乳動物に
ついては1980年代に遊離型D-アスパラギン酸、1990年代初め
に遊離型D-セリンが見いだされ、2002年にhDAOの統合失調
症への関与が報告された34)。D-アミノ酸は広範囲の生物中に存
在しているにも関わらず、多くの場合、非天然型アミノ酸と呼ば
れていたが、現在では、哺乳類の生体内にD-アミノ酸が存在し、
特にヒト脳内において遊離しているD-セリンがグルタミン酸受
容体の活性化因子(内因性のコアゴニスト)として作用するため、

図3 In situ クリックケミストリーの初の報告例
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前脳内に豊富に存在していることが示唆されている35)。従って、
脳内hDAOの過剰発現は、適切な神経機能に必要なD-セリン量
を減少させることから、hDAO阻害剤が統合失調症に対する新
たな治療薬として期待されている。しかし、現在この作用機序に
基づいた治療薬は存在していない。
DAOは、1935年にHans Adolf Krebsにより発見されたフ

ラビン酵素として知られている36)。hDAOは脳内D-セリンの調整
因子として作用するが、hDAO によりD-アミノ酸は酸化的脱ア
ミノ反応を経由してイミノ酸に変換され、イミノ酸は非酵素的な
加水分解反応により最終的にはα-ケト酸とアンモニアに分解さ
れる（図4）。

3-2-2.　ヒトD-アミノ酸酸化酵素阻害剤のスクリーニング
hDAOは、D-セリンに作用し、酸化的脱アミノ化反応により、最

終的にα-ケト酸へと変換される。その際、酸素分子を消費し過酸
化水素を生成する（図4）。hDAOに対するハイスループットな阻
害剤スクリーニング系の一つとして、hDAO酵素反応により生成

する過酸化水素と西洋ワサビペルオキシダーゼ（HRP）が2,2’-ア
ジノビス（3-エチルベンゾチアゾリン）-6-スルホン酸（ABTS）を酸
化することで緑色蛍光剤（OD 420 nm）を与えるため、この蛍光
強度を定量する方法が用いられる（図5）37)。
これまで当研究所において、本方法を利用して、大村天然化合
物ライブラリーや微生物培養抽出液ライブラリーからのhDAO
阻害活性の探索が行われていたが、hDAO阻害剤を見出すこと
ができなかった。本スクリーニング法の問題点として、培養液中
や天然物自体に硫黄を含む化合物などの過酸化水素と反応しう
る基質が多いことが挙げられ、多くのヒットサンプルが見出され
るものの、それらは偽陽性として検出されたに過ぎず、その評価
に限界があった。一方で、正確にhDAOの阻害活性を評価できる
方法として、hDAO酵素反応により消費される酸素量を測定する
オキシグラフ法がある38)。本手法は正確な阻害活性が評価でき
るが、その測定と解析に多大な時間と労力を要するためスクリー
ニング法としては適さない。

図4 ヒトD-アミノ酸酸化酵素（hDAO）によるD-セリンの酸化

図5 H2O2を定量するアッセイ（HRP/ABTS法）

図6　hDAO/sodium benzoate38)およびhDAO/imino-DOPA39)の結晶構造
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3-2-3.In situクリックケミストリーによるhDAO阻害剤の探索
上述の背景から、当研究室では非天然物で既存のhDAO阻害

剤を基にアルキンリガンドを調製し、in situクリックケミストリー
による高活性hDAO阻害剤の探索を試みた。hDAOの酵素反応
ポケットに結合する低分子リガンドとして安息香酸ナトリウム（Ki 
= 7 μM）およびイミノDOPA（Ki 不明）が知られており、それら
のX線共結晶解析が徳島大学 福井教授のグループにより解かれ
ていた（図6）38,39)。
そこでhDAO/イミノDOPAのX線共結晶図を参考にし、in 

situ クリックケミストリーのリガンドをデザイン、合成した結果、
hDAO阻害活性を有するO-プロパルギルオキシム 1（Ki = 2.5 
mM）を見出すことが出来ため、1をアルキンリガンドとしてin situ 
クリックケミストリーのスクリーニングを実施した（図7-A）40)。
In situ クリックケミストリーにおいてhDAOを鋳型としたトリ
アゾールの形成促進効果の探索は、96穴マイクロプレート上で
並列に行った（図7-A）。　創製したリガンド分子1と多様な構造
を有する250種の有機アジドライブラリーを用い、pH8.0リン酸
バッファーを含む10％メタノール中、hDAO（2 μM）の存在下
で実施した。96穴プレート上でそれぞれの混合溶液を25 ℃に

て24時静置させた後、LC/MS-SIR（Liquid chromatography/
mass spectrometry-selected ion recording）分析により、
各反応混合物の分析を行い、hDAOによるトリアゾール形成促
進効果の有無を判定した（図7-B）。その結果、リガンド分子1と
アジド241)から、hDAO依存的にトリアゾール体 3の形成促進効
果が再現性良く確認された。図7-B-1）のチャートは1と2から一
般的なHuisgen反応条件である80 oC、10時間加熱を行った時
に得られたトリアゾール体（syn : anti = 1 : 1）の分析結果であ
る。それと比較して図7-B-3）のチャートはhDAO非存在下で1と
2をバッファー中で混合し25 ℃にて24時静置後の分析結果であ
り、in situ クリックケミストリーのバックグランド反応を示してお
り、本反応条件下もしくは本分析条件下においてもわずかにトリ
アゾール化が進行しているのが確認された。そして図7-B-2）は
hDAO存在下での反応であり、バックグラウンド反応と比較して
酵素存在下ではその鋳型効果によって約2倍のトリアゾール形
成促進が認められたため、リガンド分子1とアジド2の組み合わせ
は、hDAOを用いたin situ クリックケミストリースクリーニング
のヒットと判断した。次にhDAOの鋳型効果により誘導されたト
リアゾール体の幾何異性（syn or anti）を決定するため、それぞ

図7 hDAO存在下でのリガンド分子1を用いたin situ クリックケミストリーによるスクリーニングとヒット化合物のLC/MS分析40)
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れ対応するsynおよびantiトリアゾール異性体をRuAACおよび
CuAACにより調製し、それらを標品として詳細なLC/MSの分析
を行った。その結果を図7-C）に示すが、hDAO存在下ではsyn-ト
リアゾール (Syn-3)が優先して誘導されていることが確認でき
た。またSyn-3のhDAO阻害活性（Ki = 0.5 mM）はその出発と
なるリガンド分子1（Ki = 2.5 mM）と比べておよそ5倍向上して
いた。
以上のようにhDAO存在下でSyn-3の選択的な誘導が認めら

れたので、次にSyn-3の形成誘導においてhDAOの酵素反応ポ
ケット部位が鋳型となっていることの確認を行なった。そこで図
6で示した既知のhDAO阻害剤である安息香酸ナトリウム（Ki  = 
10 µM）をin situ クリックケミストリーの条件に添加することで、
その競合拮抗効果を検証した（図8）40)。
図8ではアルキンリガンド1、およびヒットアジド2と同濃度（最

終濃度500 µM）の安息香酸ナトリウムを加え、図7-A)と同条件
にてin situ クリックケミストリーを行った結果を示す。図8中の
チャート1) はSyn-3のリファレンスピークとなる。それに比べて
チャート2) はhDAOにより形成促進されたSyn-3のピークであ
るが、チャート3)ではそこに安息香酸ナトリウムを加えることで、

Syn-3のピーク面積が約1/5程度に抑制されていることが確認
された。なおチャート4)はin situ クリックケミストリーのバックグ
ランド反応の分析結果である。この結果から今回のin situ クリッ
クケミストリーで見出されたSyn-3は、hDAOの酵素反応部位の
鋳型効果によって誘導されていることを証明することが出来た。

3-2-4.�In situクリックケミストリーを利用した大村天然化合物ラ
イブラリーからのhDAO阻害剤探索

アルキンリガンド1とヒットアジド2とのin situ クリックケミスト
リーでは、安息香酸ナトリウムを添加することでhDAOの鋳型効
果が解除されることを確認した。冒頭で述べた通りhDAO阻害
剤探索のための効率的なスクリーニング方法がないため、信頼
性およびスループット性の高いスクリーニング法の確立が望ま
れていた。このin situクリックケミストリーの手法ではhDAO酵
素反応部位に親和性を有する化合物[＝阻害剤（安息香酸ナトリ
ウム）]を用いて、その酵素鋳型効果の有用性を証明したが、阻害
剤の探索においてもこのトリアゾール形成促進効果の抑制を指
標とすることができると考え、当研究所で保有する大村天然物化
合物ライブラリー（315化合物）からのhDAO阻害剤の探索を行

図8 hDAO阻害剤（安息香酸ナトリウム）共存下でのin situ クリックケミストリー (LC/MSチャート) 40)

THE CHEMICAL TIMES 2026 No.1（通巻279号） 31

THE CHEMICAL TIMES



なった（図9）42)。
スクリーニング条件は図8で示したアルキンリガンド分子1と

ヒットアジド2をhDAO存在下で混合し、そこに天然物サンプル
を加えるという簡便なものである。その後、トリアゾール形成促
進の抑制効果の有無をLC/MSで判断した。その結果の一例を図
９に示した。 通常はチャート1）および2）のように、in situ クリッ
クケミストリーの反応系に天然物を添加しても、トリアゾール形
成促進効果に影響を与えないが、今回のスクリーニングサンプ
ル中でチオラクトマイシンを添加した時、チャート3）のようにトリ
アゾール形成促進効果は強く抑制されたため、本物質にhDAO
阻害活性作用があることが期待された。チオラクトマイシンは抗
嫌気性菌活性、type III脂肪酸合成酵素阻害物質として報告さ
れていたが、本天然物の生物活性を詳細に調査したところ、奇し
くも2010年に他の研究グループによってそのhDAO阻害活性
(Kd = 0.4 µM)が報告43)されており、今回の結果は in situクリッ
クケミストリーから見出されたヒット化合物のトリアゾール形成
促進効果を利用することで, その標的酵素の阻害活性物質スク
リーニングに活用できることを実証したものである。

04おわりに

当研究所では、これまで天然有機化合物を基盤にin situ  ク
リックケミストリーを駆使することで高効率的な高活性誘導体の
創製研究を実施し、キチナーゼを用いたスクリーニングを実践し
た経験があった。今回紹介したhDAO阻害剤探索では、広範囲
な化合物ライブラリーからの効率的なスクリーニング法がなく、
研究開始当初は天然物からの阻害剤探索が暗礁に乗り上げて
いた。そこで天然物には囚われず、既存の低分子リガンドからin 
situ クリックケミストリーを実践した。さらに、その方法を標的酵
素の特異的な阻害剤探索のスクリーニング法に転用することで、
天然化合物ライブラリーから効率的にその阻害剤を見出すこと
が出来た。今回紹介したようにin situ クリックケミストリーは医
薬品や生化学試薬の開発には非常に有用なツールであることを
改めて示すことが出来たと考えている。今後幅広い創薬研究分
野での益々の利活用を期待したい。
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