Cica Geneus® Acineto POT KIT

The spread of carbapenem-resistant *Acinetobacter spp.* has become a global problem. The POT method can not only identify the species of Carbapenem-resistant *Acinetobacter calcoaceticus baumannii* (ACB) complexes but also simultaneously determine the international epidemic clone I, II and the genetic identities of *Acinetobacter baumannii* in several hours.

This POT method can easily and rapidly identify the international epidemic clones and the identities of *Acinetobacter spp.* (*A. baumannii*, *A. pittii*, *A. nosocomialis*, *Acinetobacter* genomic species close to 13TU). It is a useful tool for infection control.

** This test method is developed by grants from the Ministry of Health, Labour, and Welfare of Japan (grants H24-Shinko-Ippan-10)

Characteristics

- This POT method developed by Dr. Suzuki of Fujita health University, it's a molecular epidemiological method which can identify and distinguish isolates with strain-level.
- This POT method can compare the homogeny between strains by digitizing (replace to POT types) an electrocataphoresis result.
- Nearly the same discriminability as the as Multilocus Sequence typing (MLST).
- Required for the examination time is approximately 4 hours.

Composition (30 rxns)

Reage	nt	Volume
Α	AptaTaq DNA Master(5×Conc.)*1	240 μL×1
В	PCR supplement	240 μL×1
С	Primer mix α	120 μL×1
D	Primer mix β	120 μL×1
Е	Positive control	240 μL×1
F	Loading buffer(6×Conc.)	240 μL×1

^{*1} AptaTaq DNA Master(5×Conc.) is the product of Roche Diagnostics K.K.

Work Flow

^{*2} CicaGeneus® DNA extraction reagent is sold separately.

Fig.1 Example of the electrophoretic pattern

50 : 50 bp DNA Ladder, P : Positive control

- 1,2: A. baumannii (ST2) (Clinical isolate from the outbreaks example)
- 3: A. baumannii (ST2)
- 4 : A. baumannii (ST2) Multiple-Drug-Resistant A. baumannii
- 5 : A. baumannii (ST1) ATCC™ BAA1605
- 6: A. baumannii (ST1)
- 7: A. baumannii (ST152)
- 8 : A. baumannii (ST34)
- 9 : A. pittii
- 10 : A. nosocomialis
- 11: A. sp. close to A. nosocomialis

Table.1 Kinds of detection ORF and Amplicon size

	POT No.	Amplicon size (bp)	POT modulus	Target domain
	PCR PC	553		atpA
	A. baumannii	465		OXA-51
	A. pittii	401	1000	Specific gene
	A. nosocomialis	362	2000	Specific gene
	A. sp. close to 13TU	321	3000	Specific gene
Reaction	POT 1-1	271	64	Genomic Islet-1
mixture 1	POT 1-2	231	32	Genomic Islet-2
	POT 1-3	189	16	Genomic Islet-3
	POT 1-4	151	8	Genomic Islet-4
	POT 1-5	122	4	Genomic Islet-5
	POT 1-6	102	2	Genomic Islet-6
	POT 1-7	81	1	Genomic Islet-7
	PCR PC	565		OXA-51
	POT 2-1	457	32	Genomic Island-1
	POT 2-2	388	16	Genomic Island-2
	POT 2-3	329	8	Genomic Island-3
	POT 2-4	280	4	Genomic Island-4
Reaction	POT 2-5	237	2	Genomic Island-5
mixture 2	POT 2-6	209	1	Genomic Island-6
mixture 2	POT 3-1	185	32	Genomic Island-7
	POT 3-2	160	16	Genomic Island-8
	POT 3-3	139	8	Genomic Island-9
	POT 3-4	120	4	Genomic Island-10
	POT 3-5	101	2	Genomic Island-11
	POT 3-6	81	1	Genomic Island-12

- 1 Distribution patterns of ORFs are identified by reading electrophoresis banding patterns (Fig.1) .
- ② POT types of three categories are obtained by input electrophoresis banding patterns into the Excel calculation sheet which can be downloaded from Kanto Chemical Co. Inc web site.
 - i When PCR PC is positive, the sample can confirm that it is Acinetobacter sp.
- ii The value of POT 1 of *A. baumannii* become less than 1000, *A. pittii* become 1000-1999, *A. nosocomialis* become 2000-2999, *A.* sp. close to 13TU become 3000-3999, Other *A.* spp. bocome more than 4000.
- iii If the value of POT 1 become 69, the strain is supposed to international clone I, If it become 122, the strain is supposed to international clone II,
- iv You can suppose the homogeny between strains objectively by comparing the POT type.
- v As for the strains obtained from outbreaks, all POT types (1-3) become same. (1&2 in Fig.1)

Result

Catagory	Sample number in Fig.1										
Category	1	2	3	4	5	6	7	8	9	10	11
POT1	122	122	122	122	69	69	72	104	1105	2105	3105
POT2	59	59	26	53	46	42	0	8	0	0	0
POT3	54	54	54	41	59	27	8	0	0	0	0

■ Product Information

Product No.	Product Name	Package size	Stored at	
08062-96	CicaGeneus® Acineto POT KIT	30 rxns	-20 ℃~-25 ℃	
08178-96	CicaGeneus® DNA Extraction Reagent	120 rxns	2 ℃~8 ℃	

Multiplex PCR kit series (stored at -20 $^{\circ}$ C \sim -25 $^{\circ}$ C)

Product No.	Product Name	Package size
08180-96	Cica Geneus® Staph POT KIT	120 rxns
08187-96	Cica Geneus® Pseudo POT KIT	50 rxns
08362-97	Cica Geneus® E.coli POT KIT	30 rxns
08106-97	Cica Geneus® C. diff POT KIT	30 rxns
08143-96	Cica Geneus® AmpC Genotype Detection KIT	30 rxns
08112-96	Cica Geneus® ESBL Genotype Detection KIT	30 rxns
08158-96	Cica Geneus® Carbapenemase Genotype Detection KIT2	30 rxns

Related reagents

Product No.	Product Name	Package size
46510-79	10×TBE buffer	1 L
46509-79	10×TAE buffer	1 L
14575-43	Ethidium bromide solution	10 mL
01089-23	Agarose KANTO HC	100 g
01016-96	AptaTaq DNA Master(5×Conc.)	500 μL

- The example data of the electrophoretic pattern is provided by Dr. Arakawa of Nagoya University and Dr.Suzuki of Fujita Health University.
- This product is obtaining the patent licensing from Aichi Prefecture and Nagoya University.

East Muromachi Mitsui BLDG, 2-1, Nihonbashi Muromachi 2-chome, Chuo-ku, Tokyo, 103-0022, JAPAN

Telephone +81-3-6214-1092 Telefax +81-3-3241-1053

http://www.kanto.co.jp E-mail; kanto-61@gms.kanto.co.jp