高感度アンモニア測定試薬の開発

Development of a highly sensitive reagent for the determination of ammonia

関東化学株式会社 技術·開発本部 伊勢原研究所 生化学研究室 千室

TOMOYUKI CHIMURO

Biochemical Department of Isehara Research Laboratory, Technology & Development Division, Kanto Chemical Co., Inc.

関東化学株式会社 技術・開発本部 伊勢原研究所 臨床化学研究室 小口 YUJI OGUCHI

Clinical Department of Isehara Research Laboratory, Technology & Development Division, Kanto Chemical Co., Inc.

1. はじめに

栄養素として取り込まれたアミノ酸のうち、タンパク質や 核酸の生合成に利用されなかった過剰なアミノ酸は、水、 二酸化炭素、アンモニアに分解される。アンモニアは非 常に毒性の強い物質であるにもかかわらず、生命を維持 する過程で絶えず産生されている。また、腸内に大量に 常在している細菌もアンモニアを産生しており、産生され たアンモニアの一部は腸管壁を経て体内に侵入してくる。 このように、生体は常にアンモニアの脅威にさらされてい るといえる1)。これに対して生体はアンモニアを無毒化す るシステム(解毒システム)を体内に構築し、対応している。 その中心となるのが肝臓の尿素サイクルである。血中のア ンモニアはここで直ちに無毒な尿素に変換され、尿として 体外に排泄される。さらに、体中の組織や腎臓にも複数 のアンモニア消去機能があり、たとえシステムの一部に軽 度な障害が生じたとしても、血中のアンモニアは常に低 濃度(10~70 μg/100mL程度)に保たれるようになってい る1)。一方、肝硬変、肝癌、劇症肝炎などの重篤な肝臓 疾患や先天性の尿素サイクル欠損症といったこのシステム に重度な障害を生じた患者は、血中のアンモニアを消去 しきれないため、アンモニア中毒におちいるリスクが高くな る。アンモニア中毒が進むと昏睡や死に至ることもあるこ とから、特にこのような患者に対しては血中アンモニア濃 度を把握することが極めて重要になる2)。

今般著者らは、旭化成株式会社(現旭化成ファーマ株 式会社)と共同で、血中アンモニアを測定する新たな方 法を開発した。本稿ではその測定方法を体外診断薬に 応用した例を中心として紹介する。

2. 開発の背景

先に述べたように、健常人の血中アンモニアは低濃度 に保たれている。従って、測定法には少なくとも数μg/ 100mLレベルのアンモニアを測定できる性能が要求され る。また、赤血球中にはAMPデアミナーゼのようなアンモ ニア産生に関与する一連の酵素(核酸代謝酵素)と基質 であるプリンヌクレオチドが存在しているため、検体中の アンモニア濃度は非常に上昇し易く3)、採血後直ちに測 定する場合以外は何らかの前処理が必要になる。通常、 この前処理は検体の希釈を伴うため、測定法にはさらに 低濃度のアンモニアを測定できる性能が望まれる。

体外診断薬として重要な点は測定結果の信頼性を確 保することであり、測定感度の向上はこれを達成するた めの必須要件であるが、その他に操作の簡便性、試薬 の安定性、汎用型自動分析装置への適用性などが求め られる。現在、臨床検査に用いられている主な血中アン モニア測定法を表1に示したが、いずれの方法も一長一 短があり、求められている性能のすべてをもつような測定 法は見出されていない。

表1 血中アンモニア測定法と性能の比較

方法	検体	測定	感度	特異性	再現性	多検体
直接比色法 4〉	血漿* 全血*	用手法	0	Δ	Δ	×
ドライケミストリー法 ⁵⁾	全血	専用機	Δ	Δ	Δ	Δ
酵素法 (GIDH-UV 法 ⁶⁾)	血漿	汎用機**	Δ	0	Δ	0
酵素法 (NADS-UV 法 ⁷⁾)	血漿	汎用機**	Δ	0	0	0

各項目の性能を3段階で評価した(O:良好(高い), Δ:不良(低い), ×:不可)

^{*} 検体を除タンパク処理し、その上清を検体に用いる

^{**} 汎用型自動分析装置 GIDH: glutamine dehydroger

NADS: nicotinamide adenine dinucleotide synthetase

3. 酵素サイクリング法によるアンモニアの高感度測定

今般著者らは、3種類の酵素反応を組み合わせたアン モニアの測定方法を考案した(図1)。

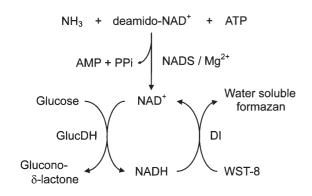


図1 高感度アンモニア測定試薬の測定原理 NADS: NAD synthetase; GlucDH: glucose dehydrogenase; DI: diaphorase

本法は検体中のアンモニアをNAD+に変換する反応 と、生成したNAD+をグルコースデヒドロゲナーゼ(以下 GlucDHと略)とジアホラーゼ(以下DIと略)とで増幅する 反応(酵素サイクリング反応)の2段階で構成されている。 GlucDHとDIによってNAD+とNADH間のサイクリング反 応がn回転すると、NAD+(またはNADH)のn倍量の水 溶性のホルマザン色素がWST-8から生成し蓄積される ために、単位時間あたりの回転数が多いほど感度が上 昇することになる。さらに、水溶性ホルマザンの生成速 度はアンモニアから変換されたNAD+の濃度と比例関係 にあるため、水溶性ホルマザンを分光学的に測定する ことで検体中のアンモニア濃度を求めることができる。

4. 測定感度の設定

測定感度はサイクリング定数Kcと時間tの積で決まり、 Kc=(Ka×Kb) / (Ka+Kb) であるため、Ka+Kbを一定 としたとき、Ka=KbでKcが最大になる(Ka、Kbは GlucDHとDIの酵素反応定数)8)。実際には、必要な測 定可能範囲や試薬の安定性を考慮して、酵素濃度を調 整し、Kcを決定する。本検討では血中のアンモニアを測 定することを意図し、400 μg/100mLのアンモニアを検体 としたとき測定終了時の吸光度が2.0以下で、かつ基準 範囲 (12~66 µg/100mL2)) 付近の測定再現性がCV 3% 以下を満足するような試薬処方と分析条件(検体/試薬 比や反応時間など)を設定した。設定した条件でアンモ ニア標準液 (200 μg/100mL)を測定したときのタイムコー スを図2に示す。

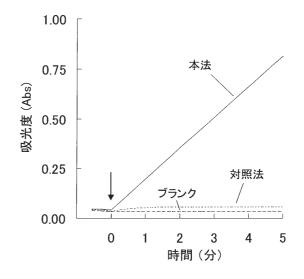


図2 アンモニア標準液(200µg/100mL)の測定(タイムコース) 本法:水溶性ホルマザンを検出(450nmにおける吸光度) 対照法:NADHを検出(増幅なし、340nmにおける吸光度)

本法の場合、吸光度は時間軸に対して一次的に上昇 し、5分間の吸光度変化量は0.75に達した。一方、酵素 サイクリングをさせない対照法では、反応開始後ほぼ1分 でプラトーに達し、5分経過した時の吸光度変化量は 0.02でしかなかった。5分間の反応において、本法は対 照法に対して37.5倍に増感された。なお、反応時間を延 長することでさらに感度を上昇させることができるし、本 法の場合はGlucDH濃度を2倍、3倍と増やすだけでも感 度を上昇させることが可能である(図3)。究極的には 1000倍以上感度を高められる可能性がある。

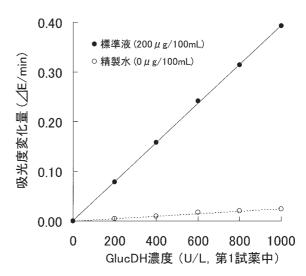


図3 グルコースデヒドロゲナーゼ濃度と測定感度の関係 GlucDH: glucose dehydrogenase

5. 使用方法

本測定原理に基づき、第1試薬と第2試薬の2つの試 薬から成るキットを作製した。

標準的な測定手順は次のとおりである。先ず検体と30 倍量の第1試薬を混合し、37℃で5分間インキュベートす る。続けて10倍量の第2試薬を加えて反応を開始し、 450 nmでの吸光度変化量 (△E/min) を測定する。そし て、専用の標準液を用いて予め作成した検量線から検 体中のアンモニア濃度を算出する。

6. 基本性能

臨床検査で広く普及している汎用型の自動分析装置 を用いて本試薬の基本性能を評価した。

(1)ヒト血漿を検体とした場合

再現性は日内および日間とも変動係数(CV)が1~3%、 測定可能な濃度範囲は3~400 µg/100mLであった。測 定を妨害する可能性がある還元性物質(アスコルビン酸、 グルタチオン等)やビリルビン、さらには溶血、乳び等の 影響はほとんど認められなかった。従来の酵素法試薬と の相関性は本法をY軸にした場合、回帰式y=1.02x-6.76、 相関係数r=0.999と良好であった。

(2)全血を前処理した検体の場合

採血後に生じる検体中のアンモニア濃度の上昇を防 ぐには、タングステン酸ナトリウムを含んだ強酸性溶液で 除タンパクする方法が有効である。この処理を行った検 体は、長期間安定であるため信頼性を確保するのに有 用であるが、これまでは検体の性質により直接比色法 (用手法)にしか適用できなかった。本法はこの除タンパ クを行った検体についても血漿を検体とした場合と同等 の性能を示し、全血を検体として用いるドライケミストリー 法との相関では、本法をY軸とした場合、回帰式 y=0.969x+6.250相関係数r=0.998と良好な結果が得られ

本キットは製造後8ヶ月(冷蔵保存)以上安定であった。 本キットは体外診断薬として十分な性能を有していると 考えられた。

7. 他項目への応用展開

本稿で紹介した酵素サイクリング法は、ATPやK+、 Mg²⁺ (金属濃度に応じてNADSが活性化する)の高感 度測定試薬としてそのまま応用が可能である。さらに、 図4に示したようにアンモニア、ATP、deamido-NAD+の いずれかを生成する酵素を組み合わせることで、様々な 物質の定量や酵素活性のための高感度測定試薬への 展開も可能である。

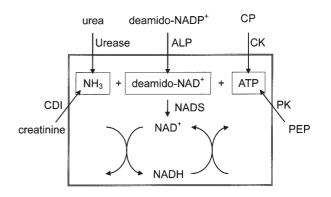


図4 酵素サイクリング反応を用いた高感度試薬 ALP: alkaline phosphatase; CK: creatine kinase; PK: pyruvate kinase; CDI: creatinine deimidase; CP: creatine phosphate; PEP: phosphoenol pyruvate

8. おわりに

酵素サイクリング法は、高感度測定法として以前から 研究されているものである9)。酵素サイクリング法は生体 試料のように多種多様な成分を含む場合でも目的物質 のシグナルのみを増幅させることができるため、臨床検 査のように迅速性が要求される場合には特に有効な方 法と考えられる。しかし、一般的に分析操作が煩雑な場 合が多く、胆汁酸、ケトン体、カルニチンなど一部の項目 にしか利用されていない。本稿では酵素サイクリング法 の実用化の一例として血中アンモニアの測定試薬の開 発について紹介させて頂いた。この試薬はReady to Useな試薬であり、高感度で再現性、特異性に優れ、長 期間安定であるという特徴を有している。さらに、従来 法と比べて検体/試薬比を小さくすることができるため、 夾雑成分や除タンパク試薬の影響を受けにくく、従来法 では困難であった全血を除タンパク処理した上清も検体 として用いることが可能である。このことから、本試薬は 臨床検査の様々な状況に対応できると考えている。なお、 本試薬は平成15年8月からシカリキッドNH3として、さら

※21ページに続く

さらには加熱器具からの汚染も無視できない事例があ る。熱伝導型のホットプレート市販品の多くは本体がアル ミニウムで作られており、非常に細かい錆が徐々に発生 し、特に本体内部にファンを装備している場合では、微 量の汚染を噴出するような状態で引き起こしやすい。こ うした場合、金属部の表面を樹脂等でコーティングした り、本体の材質を樹脂製のものに換えるなど、また表面 がガラスセラミック製の赤外線ホットプレートやハロゲンラ ンプホットプレートなどに換えることで、より汚染の少ない 分析が可能となる。

5. 分析による汚染

水酸化ナトリウムなどのナトリウム塩中の金属不純物を 測定する場合、主成分を除去せずに各種の試料をICP 質量分析装置に導入することがあるが、そのような場合 白金製のスキマーコーンを使用すると、熱伝導の関係で 2時間ほどでスキマーコーンの穴がナトリウム塩で塞がれ てしまう。その対策としてニッケル製のスキマーコーンを 使用することとなるが、この場合、ニッケル製スキマーコ ーンをステンレス製スキマーベースと組み合わせると銅の 汚染が発生し、時として銅の測定が困難となることがあ り、このような場合にはスキマーベースを真鍮製にすると 汚染が発生しなくなる。このように装置自身の部品の材 質によって特異な汚染があるので配慮を要する。また導 入系からスキマーベースに至る部品を新しいもので交換 し次の測定を実施すれば、効果的に前の試料の影響を 除くことができるほか、ICP発光分析の場合では、試料導 入前に界面活性剤を注入して汚れを落とす等のテクニッ クも効果があるので推奨したい。

5. おわりに

分析は、常に汚染との戦いといった一面を持っており、 その目的を達成するためにいかなる環境下でどのような 器具や試薬を用い、いかなる方法で行なうかを確実なも のとすることが望ましい。しかし、実際の分析では予期 できない汚染に直面することも多く、それらをどれだけ多 く認識できるかが重要なポイントとなる。さらには、試験 方法の妥当性確認を実施し、かたよりのない結果が得ら れることを事前に確認しておくことも大切である。

高感度アンモニア測定試薬の開発 ※16ページより続く

に、平成16年10月からは専用の検体前処理試薬(シカ リキッドNH₃除蛋白液)を加えて販売中である。

酵素サイクリング法は本稿で紹介した以外にも ELISA¹⁰⁾やバイオセンサー¹¹⁾などへの応用が検討され ている。また、近年盛んに研究されているμ-TASのよう な微小空間での微量試料の分析にも有効と思われる。 このように酵素サイクリング法は超高感度検出法の一つ として応用性が高いと考えている。

最後に、本試薬の開発にあたり、ご懇篤なるご指導を 頂いた旭化成株式会社 診断薬事業部 (現旭化成ファー マ株式会社)の皆様に厚くお礼を申し上げる。

参考文献

- 1) 上代淑人監訳: ハーパー・生化学 原書25版, 343-350, 2001, 丸 善.
- 2) Medical Practice編集委員会編: アンモニア窒素 臨床検査ガ イド2001~2002, 234-236, 2001, 文光堂.
- 3) 伏見了, 国沢貴久美, 林長蔵: 採血後のアンモニア上昇に対す る研究, 臨床化学, 8: 311-319, 1979.
- 4) 奥田拓道, 藤井節郎: 血中アンモニア直接比色定量法, 最新医 学, **21**: 622-627, 1966.
- 5) 伏見了, 木下憲明, 林長蔵:ドライケミスリーの原理とその評価, Medical Technology, 15: 984-986, 1987.
- 6) Mondzac A, Ehrlich G E, Seegmiller J E: An enzymatic determination of ammonia in biological fluids, J Lab & Clin Med, **66**: 526-531, 1965.
- 7) 山田満廣, 小味渕智雄: 新しい酵素反応系を用いた液状による 血液中アンモニアの測定法に関する評価,日本臨床検査自動 化学会誌, 25: 207-212, 2000.
- 8) 美崎英生: 酵素サイクリング法による高感度測定法の原理, 検査 と技術, 27: 973-980, 1999.
- 9) 加藤尚彦: 基礎生化学実験法(阿南功一ら編) vol 6 生化学的 測定, 101-146, 1976, 丸善.
- 10) Johannson A, Stanley C J, Self C H: A fast high sensitive colorimetric enzyme immunoassay system demonstrating benefits of enzyme amplification in clinical chemistry, Clin Chem Acta, 149: 119-124, 1985.
- 11) Hasebe Y, Uchiyama S: Chemically amplified adrenal medulla hormone sensor, based on substrate recycling using tyrosinase and l-ascorbic acid, Anal Sci, 9: 855-857, 1993.