ポリシロキサンを側鎖に持つイオン液体中での 分子拡散の過渡回折レーザー分光法による測定

The measurements of molecular diffusion coefficients by transient grating laser spectroscopy in polysiloxiane functionalized ionic liquids

金沢大学 理工研究域 自然システム学系 准教授 高橋 憲司 KENJI TAKAHASHI Associate Professor

Kanazawa University, College of Science and Engineering, School of Natural System,

1. はじめに

イオン液体は、真空下でも揮発しにくく安定性に優れ た溶媒であり、開発当初は有機溶媒の代替品として注目 され、その後様々な分野への応用が展開されつつある。 現在、最も活発にイオン液体の利用が展開されている応 用分野として、リチウムイオン2次電池、色素増感太陽電 池および電気二重層キャパシターなどイオニクスデバイス の電解質としての応用があげられる¹⁾。イオン液体は、ア ニオンやカチオンの構造をデザインすることにより、低温で も流動性を失わず、しかも高温でも難燃性の性質を織り 込む事が可能であり、上記応用には特に適している。国 内においては、平成17年~22年の5年間、文部科学省 科学研究費補助金特定領域研究「イオン液体の科学」 (代表 西川恵子-千葉大学)として採択され、非常に 活発な研究が集中的に実施され、日本におけるイオン液 体の基礎科学や応用が飛躍的な進歩を遂げた²⁾。

電解質などイオンや分子の拡散が関与するデバイスな どヘイオン液体を応用するときに問題となるのが、その粘 度である。イオン液体は一般的に粘度が高く、分子あるい はイオンの拡散速度が遅いという欠点がある。例えば、一 般的なイオン液体である1-ブチル-3-メチルイミダゾリウム ビス(トリフルオロメタンスルフォニル)アミド(Bmim-TFSA) の粘度は69 mPa s(25℃)であり、プロピレンカーボネート の粘度(2.76 mPa s)の25倍である。筆者らは以前、イオ ン液体中での分子間光誘起電子移動反応について研 究を行い、イオン液体の比較として用いたシリコンオイル中 での反応速度が、同じ粘度にも関わらず10倍ほど速いこ とを見出した。それらの結果の一例を表1に示した。

表1 各種溶媒の粘度と拡散律速反応速度定数の関係

	$\eta $ [mPa s]	$k_{diff} [\mathrm{M}^{-1} \mathrm{s}^{-1}]$
シリコンオイル	78	4.2x10 ⁹
グリセリン/エタノール	78	6.1x10 ⁸
イオン液体 TMPA-TFSA	78	5.8x10 ⁸

例えば、グリセリン/エタノール混合溶媒中とイオン液 体であるトリメチルプロピルアンモニウム ビス(トリフルオロ メタンスルフォニル)アミド(TMPA-TFSA)中では、ほぼ同 一の速度定数を示すが、これら溶媒と同じ粘度に調整し たシリコンオイル中での速度定数は10倍ほど大きな値で あった。従って、シリコンオイルを構成するポリシロキサン 構造を含む溶媒中では、同一粘度のイオン液体と比較し て速い分子拡散を与える可能性があると考えた。また、こ れまでにシリル基をイミダゾリウムのN位側鎖にもつイオン 液体が合成された報告が一例あり、アルキル基をN位側 鎖とするイミダゾリウム系イオン液体と比較して粘度が低 いことが報告されている3)。さらに、リチウムイオン電池の 電解質としてシロキサンを含むイオン液体に関する特許も いくつか報告されている4)。これらより、シランもしくはポリシ ロキサンを側鎖に持つイオン液体中では、反応分子の拡 散速度が速いことが期待される。しかしながら、これらシ ロキサンの機能を取り込んだイオン液体の粘度と分子拡 散係数との関係は、明らかにされていない。そこで、本研 究ではシラン及びポリシロキサンを側鎖に持つイミダゾリ ウム系イオン液体(以下シリコンイオン液体と呼称する)を 合成し、その「シリコンイオン液体」中での分子拡散係数 を測定することを試みた。分子拡散の測定には過渡回 折格子法を用い⁵⁾、ジフェニルシクロプロパン(DPCP)の 光解離反応を利用して、一酸化炭素(CO)、ジフェニル

アセチレン(DPA)などの各拡散係数をシリコンイオン液体中で測定した。

2. シリコンイオン液体の合成

図1に示すようなシランあるいはシロキサン構造をもつ イオン液体を合成した。合成は、アニオン交換反応を基 本とし図2に合成スキームを示す。はじめに末端に塩素 あるいは臭素原子を持つシランハライド分子あるいはシ ロキサンハライド分子をN-メチルイミダゾールと反応させ る。シロキサンを原料とする場合は、アセトニトリルあるい はブタノールを加えて、90-120℃で還流する。この反応 により、シランあるはシロキサンをもつイミダゾリウムカチオ ンとハライドアニオンから成る中間体としてのイオン液体 が合成される。その後、その中間体とリチウムビス(トリフ ルオロメチル)スルホンイミド{LiN(SO₂CF₃)₂}を反応さ せ、アニオン交換後抽出し24時間真空乾燥させて目的 とするイオン液体1,2,3(図1)を得た。

└__/ [Cl⁻] + Li-TFSA → __/ [TFSA] + LiC

図2 シロキサンを側鎖に持つイオン液体の合成スキーム

アニオンがハライドである中間体としてのイオン液体 は、一般に融点が高く室温では固体であることが多い。 しかし、アニオン交換反応によって、ハライドアニオンより 嵩高いアニオンに変えてやることで、カチオンとの静電 気相互作用を小さくさせ融点を下げることが可能とな る。

新規に合成したイオン液体の粘度を表2に示す。比 較のために、他のイオン液体についても示す。アルキル 基をN位側鎖に持つイミダゾリウム系イオン液体では、 一般にアルキル鎖長が長くなるにつれ粘度は増大する。 しかし、シロキサンを側鎖に持つイオン液体は、側鎖が 長くなると粘度は減少することが分かった。また、トリシロ キサンをN位側鎖とするイミダゾリウムイオン液体では、 比較的低粘度で側鎖の短いN-ブチル-N'-メチルイミダ ゾリウムイオン液体よりも粘度が低いことがわかり、シロ キサンの導入が低粘度化に有効であることが示唆され た。一方、シロキサン基が2個のイミダゾリウムイオン液 体では粘度が高く、短い側鎖では粘度低下の効果は 小さいことが示された。

	粘度(mPa s)	密度(g/ml)	融点(℃)
	162 (25°C)	1.3	-
	183 (22°C)	1.3	-
-n to	47 (25°C)	1.5	-
TFSA-]	21.4 (25°C)	1.52	-16
[TFSA]	69 (25°C)	1.44	-4
TFSA-]	78 (25°C)	1.31	-12

表2 合成したイオン液体の粘度と密度など

実験結果からだけでは、なぜシロキサンを側鎖に導 入すると粘度が低下するか不明なため、分子軌道計算 を行い、その効果について検討した。Gaussian 03を用 いてDFT計算をB3LYP(3-21G)レベルで行った。表3 には、ジシロキサンおよびトリシロキサンを側鎖に持つイミ ダゾリウムの最高被占軌道(HOMO)を示した。比較の ために、それぞれのシロキサン基のケイ素を炭素に置き 換えた場合の同様の結果をまとめた。ジシロキサンを側 鎖に持つイミダゾリウムとそれに対応する炭素を骨格と するイオン液体では、HOMOの分布には大きな差はな い。しかし、トリシロキサンを側鎖に持つイミダゾリウムと それに対応する炭素を骨格とするイオン液体では、 HOMOの分布には極めて大きな差異があることが判明 した。トリシロキサンを側鎖に持つ場合、HOMOはイミダ ゾリウム環から離れたSi-Oに局在化しているのに対し、 炭素を骨格とするイオン液体では比較的広範囲に分子 軌道が広がっているのが分かる。

また、部分電荷に着目すると、トリシロキサンの場合、 Mulliken 電荷はケイ素Si(2)およびSi(4)では1.57程 度、ケイ素に結合しているメチル基の炭素は-1.07、そし て酸素O(3)およびO(5)では-0.78程度である。一方、 炭素を骨格とする場合は、電荷の分布は全く異なり、酸 素に結合している炭素上のMulliken電荷はC(2)で 0.16、C(4)で0.46であり、メチル基の炭素は-0.55そし て酸素O(3)およびO(5)では-0.5程度である。つまり、 ケイ素を導入したことによる大きな変化は、ケイ素上の 部分電荷がプラスに増大することと、その反動でケイ素 に結合しているメチル基の炭素の部分電荷がマイナス に大きく偏ることである。一般的な考えでは、部分電荷 が大きいほど分子間のクーロン相互作用が大きくなるの で、ケイ素を含むイオン液体では、分子間の相互作用 が増えて粘度も増大することが考えられる。しかし、実 測データではシロキサンの導入は、粘度の低下に効果 を発揮している。この違いは明確ではないが、最近の 報告では、シロキサン側鎖が回転するための障壁が、 炭素を骨格とする場合に比較して小さなエネルギーで 回転できることが示されており、そのような側鎖の特異 的機能が低粘度に寄与しているのかもしれない⁶⁾。

	C(1) = -0.59 Si(2) = 1.58 O(3) = -0.77 Si(4) = 1.56
	C(1) = -0.18 $C(2) = 0.16$ $O(3) = -0.52$ $C(4) = 0.11$
	C(1) = -0.56 Si(2) = 1.57 O(3) = -0.78 Si(4) = 1.58 O(5) = -0.77 Si(6) = 1.54
$1 \qquad 3 \qquad 5 \qquad 1 \qquad 0 \qquad 4 \qquad 6$	C(1) = -0.18 $C(2) = 0.16$ $O(3) = -0.50$ $C(4) = 0.46$ $O(5) = -0.5$ $C(6) = 0.11$

表3 ジシロキサンおよびトリシロキサンを側鎖に持つイミダゾリウムのHOMOお よび部分電荷

3. 過渡回折レーザー分光による拡散係数の測定

溶液中の分子の拡散係数を測定する方法はいくつ かあるが、過渡回折レーザー分光による測定は、通常 の方法では測定が不可能な短寿命のラジカル種や中 間体などの測定も可能とする優れた測定方法である。 この測定方法は、国内では京都大学の寺嶋正秀により 精力的に進められてきた^{7,8)}。また、イオン液体中での分 子の拡散については京都大学の木村桂文が過渡回折 レーザー分光法により測定している⁵⁾。そこで彼らの指導 を頂き、当研究室でも同様の過渡回折レーザー分光測 定体系を構築した。

3.1 測定原理と測定装置

過渡回折レーザー分光法の簡単な原理を説明する。 2つのコヒーレントな光パルスを交差させると図3に示すよ うに光強度の強弱の干渉縞を瞬間的に作ることができ る。この光の縞の明るいところ(光強度の強いところ)で は、その光を吸収する分子を励起することができるので、 光化学反応を起こして反応中間体やラジカル種を生成 することができる。一方、縞の暗いところ(光強度の弱い ところ)では、そのような反応は生じない。従って、2つのコ ヒーレントな光パルスが作る瞬間的な光の干渉縞(過渡 回折格子)は、空間的な濃度の濃淡を作り出すことにな る。このようにしてできた干渉縞の領域へプローブ光(図 3)を入射するとブラッグ回折が生じる。濃度の濃淡は拡 散により次第に消滅するため、そのブラッグ回折散乱光 の信号強度も次第に減少する。従って、そのブラッグ回 折散乱光の信号強度の時間変化には物質が拡散して いく情報が含まれており、それらを解析することにより拡 散係数を求めることができる。

図3 過渡回折レーザー分光法の測定原理

測定原理の詳細は参考文献7,8)に詳しく紹介されて いるので、ここでは過渡回折レーザー分光法の一般的 な特徴を示すことにしたい。

(1) 過渡回折レーザー分光法は、バックグラウンドのない

高感度分光法であるため、1µM程度の希薄溶液でも測 定可能である。

(2)干渉縞の間隔はマイクロメートルのオーダーであるため、拡散の影響は速やかに現れ、測定は短時間で終了する。そのため、拡散係数の小さい分子や大きい分子まで、そして短時間でしか存在しないような反応中間体についても測定可能である。

(3) 試料の量としては、1mL程度しか必要でなく、生体 分子などの貴重な資料の測定にも適している。

図4に、過渡回折レーザー分光法の測定装置の概略 を示した。Nd:YAGレーザー(LOTIS TII, LS-2144DC) からの355nm、10ナノ秒のレーザーパルス光をビームス プリッターで2つに分ける。その一方はプリズムを通過し た後、試料へ照射する。このプリズムをXY方向へ微動 させることにより、試料上に作られる光の干渉縞の間隔 を変化させる。一方、プローブ光としてHe-Neレーザーか らの定常光(633nm)を用い、試料上にできた干渉縞へ 入射させ、そのブラッグ散乱光を光電子増倍管で検出 し、オシロスコープにて信号を測定する。

図4 過渡回折レーザー分光装置の概略図

3.2 拡散係数の測定結果

図5に、今回用いたジフェニルシクロプロペノン (DPCP)の光開裂反応を示した。光開裂によりジフェニ ルアセチレン(DPA)と一酸化炭素(CO)が生成される。 従って、上述した光の干渉縞の光が強いところでは DPCPの開裂反応が生じて、瞬間的にDPAとCOが高濃 度な空間領域が形成され、時間とともに分子拡散してい く。そのような分子拡散の情報が含まれた過渡回折信号 の一例を図6示した。このような信号を、励起レーザーパ ルスの交差角度20(図3)を変えて測定し、DPAやCOな どの分子拡散係数を求める。

図5 ジフェニルシクロプロペノン (DPCP) の光開裂反応 開裂によりジフェニルアセチレン (DPA) と一酸化炭素 (CO) が生成される。

図6 過渡回折レーザー分光法により得られる信号の一例

このようにして求めたイオン液体中での分子拡散係数 の結果を図7に示した。図中の番号は、イオン液体の種 類の違いを示している。今回新たに合成したイオン液体 であるジシロキサンおよびトリシロキサンは番号5および6 である。また、●はCOの拡散係数、▲はDPCPの拡散 係数、そして▼はDPAの拡散係数を示している。図中の 実線は流体力学的近似であるストークス・アインシュタイ ンの式(SE式)による計算値を示している。

$$D = \frac{k_B T}{C \pi \eta r} \qquad (\text{SER})$$

ここでk_Bはボルツマン定数、Tは絶対温度、Cは滑り境 界条件で決まる定数(4あるいは6)、ηは粘度、rは分子 半径である。図中に複数の線があるのは、滑り境界条 件の違いを示している。まず、COの拡散係数は、あまり 粘度に依存しないことが分かる。そして、いずれの粘度 領域でもSE式による計算値よりは遥かに大きな拡散係 数であることがわかる。一方、分子半径の大きなDPCP やDPAは、粘度が低い領域ではSE式の計算値に近い が、粘度が高い領域ではSE式の計算値に近い が、粘度が高い領域ではSE式の計算値から大幅にず れてきて、計算値よりも大きな拡散係数となる。分子半径 の小さなCOと比較的分子半径の大きなDPCPやDPAで は、それらの拡散係数は100倍ほども違うことがわかっ た。

今回合成したイオン液体中での拡散を比較すると、ト リシロキサンを側鎖に持つイオン液体中での拡散係数が 一番大きな値であった。比較のために、グリセリン/エタ ノール混合溶媒中でのCOおよびDPCPの拡散係数を図 7に示したが(番号8○および△)、シリコンイオン液体より は小さな拡散係数であった。従って、シロキサンを導入 することにより分子拡散を促進することが確認された。一 方、シリコンオイル中でのCOおよびDPCPの拡散係数も 図7に示したが(番号7◎および▽)、最も大きな拡散係 数であることが分かった。従って、イミダゾリウム側鎖にシ ロキサンを導入すると拡散係数は促進されるが、シロキ サンのみから構成される溶媒よりはその効果は小さいと いえる。

図7 シリコンイオン液体中での分子拡散係数 図中の数字(1~6)は、イオン液体の種類の違いを示す。7は、シリコンオイ ル中の拡散係数。8は、グリセリン/エタノール混合溶媒中での拡散係 数。●:COの拡散係数、▲:DPCPの拡散係数、▼:DPAの拡散係数。

4. まとめ

分子拡散の速いイオン液体を目指して、イミダゾリウム 側鎖にシロキサンを導入したイオン液体を合成した。ジシ ロキサンを側鎖に持つイオン液体では、高い粘度であっ たがトリシロキサンを導入したイオン液体では劇的に粘 度が減少した。

過渡回折レーザー分光法により、新規に合成したイオン液体中での分子拡散を測定した。ジフェニルプロパンの光解離反応で生じる一酸化炭素およびジフェニルア

セチレンの拡散係数を測定した。一酸化炭素の拡散係 数はジフェニルアセチレンのそれよりも100倍ほど速く、粘 度への依存性も小さかった。また、流体力学的な近似で あるストークス・アインシュタインの式では、拡散係数を予 測することはできなかった。ほぼ同一の粘度の分子性溶 媒(グルセリン/エタノール混合溶媒)に比較して、新規 に合成したシリコンイオン液体中での分子拡散は速いこ とがわかった。しかしながら、シロキサンのみから構成さ れるシリコンオイル中での分子拡散が最も速かった。従っ て、今回合成したトリシロキサンを側鎖に持つイオン液体 よりも、より長いシロキサンを導入したイオン液体では、より 粘度が低下し、分子拡散が速いことが期待される。ま た、イミダゾリウム骨格だけでなく、アンモニウムやホスホ ニウム系のイオン液体にシロキサンを導入することを今 後試みたいと考えている。

謝辞

今回測定に用いた過渡回折レーザー分光装置の立 ち上げには、京都大学の木村桂文准教授に多大なるご 指導を頂きました。また、装置の組み立て及びシリコンイ オン液体の合成と拡散係数の測定は、当研究室の比 江嶋祐介助教、大学院生の尾崎弘晃君および坂井康 弘君の協力なくしては実現できませんでした。また、本研 究の一部は、文部科学省科学研究費補助金特定領域 「イオン液体の科学」による支援を受けました。

参考文献

- 「イオン液体(3)-ナノ・バイオサイエンスへの挑戦」大野 弘幸監修、シーエムシー出版(2010)
- http://ionliq.chem.nagoya-u.ac.jp/(文部科学省 特定領域研 究 イオン液体の科学)
- H. Shirota, J.F. Wishart, E. W. Castner Jr., J. Phys. Chem. B, 111, 4819 (2007)
- 4) 川田敦志, 熊谷逸裕, "アミノシロキサン系イオン液体", 特開 2008-239514
- Y. Nishiyama, M. Terazima, Y. Kimura, J. Phys. Chem. B, 113, 5188 (2009)
- 6) H. Niedermeyer, M. A. A. Rani, P.D. Lickiss, J. P. Hallett, T. Welton, A. J.P. White, P. A. Hunt, *Physical Chem. Chem. Phys.*, 12, 2018 (2010)
- 7) 寺嶋正秀, 光化学, 20, 18-25(1995)
- 8) M. Terazima, H. Hirota, J. Chem. Phys., 98, 6257 (1993)