Tite

ISSN 0285－2446
KANTO CHEMICAL CO．，INC．
1987年 No． 3 （通巻125号）
CHEMMCAL TIMES

目 次
DNA の化学合成（III）．．⿵⿰⿰丨⿻コ一⿰⿷匚一亅⿱丷天犬根 光 雄．．．．．． 50

私の古生物誌（7）

隹べ物でガンを防ぐ（I）

くすりの文化交流（3）
——夏の花の毒とくすり——．． 70

DNA の化学合成（III）

東京工業大学 総合理工学研究科 理学博士 関 根 光 雄

ホスファイト法によるDNA の合成

1975年 Letsinger ら＂は＂ホスファイト法＂と呼ばれる新しい䖻合反応の方法を報告した。本法はトリエステル法がリン酸基と糖水酸基の縮合形式をとるものであった のに対し，酸化度が1段階低い巠りン酸の酸塩化物を反応中間体として用い糖水酸基と 3 級アミン存在下脱塩化水素反応により縮合し中間に生成するホスファイトトリ エステル（2）をヨウ素により酸化して得るものである （図1）。

トリエステル法が従来アレンスルホニルアゾール系の縮合剤の開発とともに著しく反応時間が短縮されたがま だ迅速性の点で満足できるものではなかった。これにく らべ，ホスファイト法は液相に於てはわずか数分以内で反応が完結することが報告され，とくに長鎖 DNAの固相合成への応用に期待が高まった。しかし，液相法では $-78^{\circ} \mathrm{C}$ の低温で反応を行う必要もあり，また DNA 合成 の出発物質であるデオキシヌクレオシドの亚リン酸塩化物（1）が安定性に欠けるため再現性や取り扱い上の問題 が残された。

図1 ホスファイト法

アミダイト法によるDNA の合成

上述したホスファイト法の問題点を解決するため Caru－ thers ら ${ }^{21}$ はデオキシヌクレオシドの覀リン酸アミド（図2） （3）を合成コニットとして用いる新しいDNA合成法を開発した。この方法はユニット（3）を縮合反応の際テトラ ゾールなどの弱い酸触媒を加え P•N 結合を活性化し糖水酸基と結合させる方法であり，ホスファイト法のユニッ トの $\mathrm{P}-\mathrm{Cl}$ 結合の代りに，より安定な $\mathrm{P}-\mathrm{N}$ 結合を導入し

たものである。
本法は，はじめ亜リン酸アミドのジアルキルアミノ基 としてジメチルアミノ基 ${ }^{29}$ が用いられていたが，やはり湿気に対し不安定で長期間保存ができないため，その後電子吸引効果で安定化されたモルホリノ基 ${ }^{3.41}$ や立体障害 の高いジイソプロピル基 ${ }^{3.5)}$ が使われるようになった。前者はシリカゲルやCPG（Controlled pore glass）等の無機固相担体上で $15 \sim 30$ 分程度，後者は $2 \sim 10$ 分程度の反

応時間で䖻合できる。アミダイト法の代表的固相合成の棭合サイクルを表1に示す。

図2 アミダイト法
ホスファイト法およびアミダイト法の場合リン酸の保談基としてトリエステル法では用いることのできなかっ た最も単純なメチル基が使用できる。この保護基はトリ エチルアミン存在下ベンゼンチオールにより容易に除去 できる ${ }^{2 \prime}$ 。また，β－脱離により除去できるシアノエチル基6．7も用いることができ，この場合アンモニア処理だけ で塩基とリン酸基の保護基の他，リンカーのエステル結合も同時に除去することが出来る。

目的とするDNAオリゴマーは先に述べた高速液体ク ロマトグラワィーやゲル電気泳動等の分離手段を用いて単雄されている。

本法は固相担体としてはポリスチレン系のものよりも上述したシリカゲルやCPGゲルの方が良好な結果を与 える。これらの無機担体の場合，各操作後の試薬の洗浄 が極めて简単であり，その結果，一回の縮合サイクルは完全自動合成機を用いれば十数分で行える。マニュアル の埸合には20分程度で行える。現在アミダイト法を用い て60至体程湆のDNAオリゴマーが合成されている。

DNA 合成の最剈線

最近，トリエステル法の反応速度をさらに改善するた め種々の検討がなされている。

Efimovらはアレンスルホニルクロリド $\left(\mathrm{ArSO}_{2} \mathrm{Cl}\right)$ に N－メチルイミタゾールを加えると著しく縮合反応加向上 することを見いだしている8．9）この縮合系を用いて液相法 により62量体，固相法により42量体のDNAフラグメン トが合成された ${ }^{101}$（図 3 ）。
一方，Matteucci ら ${ }^{11}$ はN・メチルイミダゾールの強力 な反応促進刘果に着目しリン酸の保護基にN－メチルイミ ダゾール残基を含ませた新しいタイプの保護基である2－ （1－メチルイミダゾール－2－イル）フェニル基を開発し， これにより数分で固相上での縮合を可能にした。しかし， この保護基の除去には，o・クロロフェニル基よりもはる

表1 アミダイト法によるオリゴヌクレオチドの合成サイクル）

	㩰 作	Le（me）	時間（分）
1	0.2 M ジクロロ酢酸／ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	2	2
2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{3} \mathrm{CN}$ 洗浄	5	
3	$\mathrm{CH}_{3} \mathrm{CN} \quad \mathrm{N}_{2}$ 圧下洗浄	2	
4	$\begin{aligned} & \text { アミタイト* }(15 \mathrm{eq}) / \mathrm{CH}_{3} \mathrm{CN} \\ & +テ ト ラ ソ ー ル(40 \mathrm{eq}) / \mathrm{CH}_{3} \mathrm{CN} \end{aligned}$	$\begin{aligned} & 0.25+ \\ & 0.25 \end{aligned}$	2
5	$\mathrm{CH}_{3} \mathrm{CN}$ 洗浄		
6	$\begin{aligned} & 0.1 \mathrm{MI}_{2} / \text { ルチジン-THF- } \mathrm{H}_{2} \mathrm{O} \\ & (1: 2: 2) \end{aligned}$	1	1
7	$\mathrm{CH}_{3} \mathrm{CN}$ ，THF 洗浄	5	
8	0．1M DMAP／THF＋ $\mathrm{AC}_{2} \mathrm{O}$－ルチジン $(1: 2)$	$\begin{aligned} & 1+ \\ & 0.5 \end{aligned}$	
9	$\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 洗浄		

かに過酷な条件を必要としている（図4）。
さらに，ごく最近 Efimovら ${ }^{121}$ はアゾール類のかわり に棭合反応の助剤としてピリジン－N－オキシド系の化合物がきわめて反応速度を高める効果があることを見出し た。とくに反応助剤として4－（ジメチルアミノ）ピリジン－ N－オキシドや4－エトキシピリジン－N－オキシドがすぐれ ている。これらの助剤とアレンスルホニルクロリドとの組み合せによる新しい縮合反応系を用いて20量体のDNA フラグメントが迅速に合成された ${ }^{131}$（図5）

しかし，このようなトリエステル法の改良にもかかわ らず依然として縮合剤による5＇スルホニル化の副反応が終局的な問題として残されている。また，反応速度が向上した分，塩基部位の縮合剤等による修飾反応も無視で きなくなり新らたな問題も生じてきた。前者の5スルホ

ン化反応は今後の研究対象となろうが，後者の副反応は最近，副反応の起こる部位に新しい保護基を導入するこ とで問題が解決されてきた。とくに，グアニン塩基部位 の副反応が顕著であることから，グアニンの O^{6} 位や N^{1}

および N^{2} 位にニトロフェニル基や14．15）ジフェニルカルバ モイル基 ${ }^{16.17)}$ ，二トロフェニルエチル基 ${ }^{18.19)}$ ，1，2－ビス （イソブチリルオキシ）エチレン基 ${ }^{201}$ 等の新しい保護基が導入されている（図6）。

＊N－メチルイミダソール

図3 $\mathrm{ArSO}_{2} \mathrm{Cl} / \mathrm{MeIm}$ 系によるトリエステル法

図 4 Matteucci らの隣接基関与による縮合反応の迅速化

＂highly reactive＂

図5 ビリジン－N－オキシドを縮合助剤として用いる新しい迅速 DNA 合成法

$17,18,20)$

19）

14）

21）

Gu
Th

図6 副反応を防ぐヌクレオシド塩基の新しい保護基

一方，アミダイト法でも技術的には～60皆体程度の DNAが合成できるところまで方法が確立されてきたが， この方法に於ても詳細に検討すると縮合系や脱保誮操作 にまだ問題があることが指摘されている。前者の問題は トリエステル法と同じくグアニン塩基への副反応 ${ }^{201}$ であ り，後者の問題としてはチミン塩基のメチル化反応 ${ }^{231}$ （リン酸基の保護基にメチル基を選んだ場合）などが報告 されている。

無機担体を用いるアミダイト法の場合には反応が速い わりに棭合効率の悪さから大過剰のヌクレオチドユニッ ト（10～20当量）が必要であり，液相法にくらべ操作が䉍単なかわりにユニットの消費鲳が多く大きな問題とな っている。このため一旦使用したユニットの再利用も含 めて，回収方法や本質的にユニットの使用量を減らせる固相担体の開発等種々の試みがなされている。上述したこ れらの問題点は現在急ピッチで解决されようとしている。分子生物学の分野で役にたつ＂ミックスドプローブ＂の合成法も多くのアプローチが開発されている ${ }^{24)}$ 。また， ＂ユニバーサル＂塩基とも言うべきデオキシイノシンを含むオリゴマーを用いる特定のDNA 遺伝子とハイブリ ダイゼーションできる新しいプローブの開発など ${ }^{(251}$ 合成化学と生化学が有機的に結合した研究も数多く報告さ れている。近い将来，200量体程度のDNA フラグメント が容易に合成される時代が到来すると思われる。

追記

本稿を書き終えた頃 Matteucci ${ }^{261}$ により低濃度のヌク レオチドユニットでもきわめて迅速に縮合できるヌクレ

オシドホスホネートを用いる新しいDNA 合成法が報告 された。今後，発展が期待できる新反応と思われる。

文献

1）R．L．Letsinger，J．L．Finnan，G．A．Heavner，and W．B． Lunsford，J．Am．Chem．Soc．，97， 3278 （1975）．
2）S．L．Beaucage and M．H．Caruthers，Tetrahedron Lett．，22， 1859 （1982）．
3）L．J．McBride and M．H．Caruthers，Tetrahedron Lett．，24， 245 （1983）．
4）T．Dörper and E．L．Winnacker，Nucleic Acids Res．，11， 2575 （1983）．
5）S．P．Adams，K．S．Kavka，E．J．Wykes，S．B．Holder，G．R． Galluppi，J．Am．Chem．Soc．，105， 661 （1983）．
6）N．D．Sihna，J．Biernat，and H．Köster，Tetrahedron Lett．，24， 5843 （1983）．
7）N．D．Sinha，J．Biernat，J．McManus，and H．Koster，Nucleic Acids Res．，12， 4539 （1984）．
8）V．A．Efimov，S．V．Reverdatto，and O．G．Chakhmakhcheva， Tetrahedron Lett．，23，961（1982）．
9）V．A．Efimov，S．V．Reverdatto and O．G．Chakhmakhcheva， Nucleic Acids Res．，10，6675（1982）．
10）V．A．Efimov，A．A．Buryakova，S．V．Reverdatto，O．G． Chakhmakhcheva，and Yu．A．Ovchinmikov，Nucleic Acids Res．，11， 8369 （1983）．
11）B．C．Froehler and M．D．Matteucci，J．Am．Chem．Soc．，107， 278 （1985）．
12）V．A．Efimov，O．G．Chakhmakhcheva，and Yu．A．Ovchinni－ kov，Nucleic Acids Res．，13， 3651 （1985）．
13）S．S．Jones，C．B．Reese，S．Sibanda，and A．Ubasawa， Tetrahedron Lett．，22， 4755 （1981）．
14）C．B．Reese and P．A．Skone，J．Chem．Soc．，Perkin I 1263 （1984）．

15）T．Kamimura，M．Tsuchiya，K．Koura，M．Sekine，and T． Hata，Tetrahedron Lett．，24， 2775 （1983）．
16）T．Kamimura，K．Urakami，K．Koura，M．Sekine，K．Shino－ zaki，K．Miura，and T．Hata，J．Am．Chem．Soc．，106， 4552 （1984）．
17）B．L．Gaffney and R．A．Jones，Tetrahedron Lett．，23， 2257 （1982）．
18）T．Trichtinger，R．Charublala，and W．Pfleiderer，Tetrahedron Letl．，24， 711 （1983）．
19）M．Sekine，J．Matsuzaki，and T．Hata，Tetrahedron Lett．， 23. 5287 （1982）．
20）R．T．Pon，M．J．Damha，and K．K．Ogilvie，Nucleic Acids Res．，13， 6447 （1985）．

21）B．S．Schulz and W．Pfleiderer，Tetrahedron Lett．，24， 3587 （1983）．
22）J．Matsuzaki，H．Hotoda，M．Sekine，and T．Hata， Tetrahedron Lett．，25， 4019 （1984）．
23）X．Gao，B．L．Gaffney，M．Senior，R．R．Riddle，and R．A． Jones，Nudeic Acids Res．，13， 573 （1985）．
24）Y．Ike，S．Ikuta，M．Sato，T．Hung，and K．Itakura， Nucleic Acids Res．．11， 477 （1983）．
25）E．Ohtsuka，S．Matsuki，M．Ikehara，Y．Takahashi，and K． Matsubara，J．Biol．Chem．，260， 2605 （1985）．
26）B．C．Froehler and M．D．Matteucci，Tetrahedron Lett．，27， 469 （1986）．

半導体の加工と薬品中の塵あい

東海大学 工学部 通信工学科 教授 工学愽士 小 野 員 正

最近の半導体デバイスでは，周知のようにメモリを初 めとして多くの機種で極めて大規模，高密度の集積がな されている。そのためデバイス素子の設計寸法も著しく微細化し，種々の難しい問題を生じている。すなわち加工技術上だけでなく，製造環境，装置，健用資材等にも著しい制限を必要とし，それらの設備費，購入費等の高騰を招いている。なぁ加工技術面の困難度は将にその㮀 に達した観さえあり，担当方面の日夜を分かたぬ努力に よってようやく支えられているのが現状である。
以下に微細加工の現状と，これに関連した室内および薬品中の塵あいの問題について述べ，さらにクリーンルー ムに対する考え方を説明して参考に供したい。

1．微細化の変遷と現状

微細化の特に著しいメモリ素子を中心に話を進める。 10数年前に電電公社が電子交換機用として開発した 4 Kbメモリ（n－channelで担当会社はN．H．F．O．の4社。交換機用メモりとして半導体素子を用いた世界最初のも のである。）では，最小加工寸法が $7 \mu \mathrm{~m}$ から $10 \mu \mathrm{~m}$ の範囲であったが，当時の加工技術では，これでも会社によ っては自由自在に実現し得る寸法ではなかった。このメモ

モリ素子はn•Channel 型であることも含めて，各メーカーに半導体メモリ開発競争を促し，現今のような半導体メモ リの全盛時代へのトリガーとなった歴史的なものである。 $4 \mathrm{~Kb} \times$ モリで確立した $7 \mu \mathrm{~m}$ 技術は，その後の 16 Kb ， 32 Kb メモリの試作検討を通じて $5 \mu \mathrm{~m}$ 技術の確立につ ながり，やがて $3 \mu \mathrm{~m}$ 時代に入って行くことになったの である。このような変慗に要した時間は，技術が流れに乗ったこともあって比較的短く，高々 2 年間位ではなか ったかと思う。半導体メモリを搭載した交換機の実用化 が終了して一息ついたとき，IBM の超大型メモり開発情報が飛び込んできて，電電公社の技術陣はその対策を迫られることになったのである。IBM 情報にあるところ のフル・ウエーハ型は無理としても，現有の $3 \mu \mathrm{~m}$ 技術 を駆使した 64 Kb メモリ素子実現への挑戦が始まること になったのは確か1974年であった。N．H．F 3 社との共同研究が実際に動き出したのは翌1975年であったが，この とき最小加工寸法をどの程度にするかは，各メーカーの技術差もあって，一番論䊰を呼んだところである。各社同時に実現して，公社の交換機に適用させるのが狙いで あったので，当初は確実性の高い $3 \mu \mathrm{~m}$ ルール使用が決定されたのである。しかしこれで設計を始めたところ，

電気的性能が目標値（アクセス・タイム 150 ns ））から可成り外れ， 300 ns ．をも下回り兼ねないことがわかってき た。

以上のシミュレーション結果は，直ちに担当メーカー に通知され，急きょ電気的性能の確保の観点から設計の やり直しが行われ，最小寸法 $1.5 \mu \mathrm{~m}$ 案が具体化すること になった。

設計側は机上計算であるから変更にからむ問題は少な かったが，加工側の私はこの数字の実現の困難度を思い，重苦しい気持ちになったのを覚えている。設計側との協議を続け，何とか数値の楥和を取り付けようと努力した が，この寸法の実現が不可能なら，意味のあるメモリの実現も不可能であるという設計側に押し切られた形で，計画はスタートしたのである。

微細加工装䈯（電子線描画装置，X 線露光装置，プラ ズマエッチャー等々），使用資材（電子線用レジスト，大口径 Si ウエーハ等）の開発を併行させながら加工法の検討を行い，3年後の1978年春に予定通りアクセス・タ イム 100 ns ．の 64 Kb メモリを電電の研究所を含めた 4者が夫々手にすることができたのである。

このようにして $1.5 \mu \mathrm{~m}$ の加工寸法を克服した半遒体加工屋は，これを適用して 256 Kb メモリを完成し，を らに加工技術の向上を図り可成りの規模で 1 Mb メモリ や 4 Mb メモりの試作品も世に出しつつある。

因に 1 Mb 素子では $1 \sim 1.2 \mu \mathrm{~m}, 4 \mathrm{Mb}$ 素子では 0.8 $\mu \mathrm{m}$ 程度の肌工寸法でついに $1 \mu \mathrm{~m}$ を割る所謵サブミクロ ンの加工寸法の確立が急速に達成されようとしている。

さらにチップ形としては最終的なものと考えられてい る 16 Mb メモリ素子では， $0.2 \mu \mathrm{~m}$ 程度の最小寸法が必要 になると推定されているが，恐らくこのバリアも日なら ずしてクリアーされることになるであるう。

16 Mb の次にくるものは，フル・ウエーハ形乃至は 3次元形になるであろうことが予想されている。こうなる と必要な最小加工寸法は，さらに微細化するか，全く新 しい回路設計や加工技術の出現が要求されることになろ う。いずれにしても現在の半導体加工可法は，極度に微細化し，環境からの影響を受け易くなっているので，そ の取り扱いには極めて慎重な配慮が要ることになるので ある。

2．廐あい粒径とその管理

その存在がパターンの欠落やピンホール等の発生原因 になる塵あいは，その粒径の管理目標をパターン寸法の約1／10におけと云われている。したがって現在取り扱わ れている $1 \mu \mathrm{~m}$ の加工寸法に対しては $0.1 \mu \mathrm{~m}$ 以上の塵あ

いが除去目標と考えられている。 $4 \mathrm{Mb}, 16 \mathrm{Mb}$ メモリに必要なサブミクロン加工では，それ相当に管理粒径の限界が數しいものになるのは当然である。塺あいは上述し たような物理的障害になるばかりでなく，加工工程中に気化したり，溶剤に溶けてイオン化したりして広範なイ ンパクトを与えることも考えられる。（詳しくは後述）

このような場合は粒径の大小はそれ程問題でなく，塺 あいを棈成する組成物質が何であるかの方が重要である。

例えばNaまたはこれを含む物質は電気的性質を損な う原因になり，熱処理時に気化するようなものは，不純物源となって拡散し，基板特性を変化させてしまう恐れ もある。

このような観点からすると，塺あいを単に粒径で管理 し制御することは必ずしも万全でないことになる。すな わち塺あいは制御可能なら全ての粒径にわたって行われ るべきものであると考えられるのである。

3．噔あい源

半䢘体加工における周囲環境の厩あいには，元来大気中に含まれていて空気フィルターで除去し切れないで残 ったものと，クリーンルーム内で新たに発生するものが考えられる。

大気中に含まれる塵あいについては，HEPAフィルタ ーの高度のものを用いた全面ダウンフロー形式等の採用 で可成りの成果が得られている。問題はクリーンルーム内で作業中に発生するものであるので，その発生原因に ついて考えて見ることにする。

発生源の第1は作業者であろう。人間は生命体であるの でその体は常に新陳代謝を繰り返している。すなわち汘，唾液，ふけ，脱毛等が常時体外に排出されている。これ らの排出物には先に問題にした Na が多量に含まれたり付着している他に溶剤に不溶の物も多い。どんなに完全 な防麾服でもこれらが全く外へ出ないような構造にする ことは現状では不可能に近い。人体に関する上記の物の他にも服地の相互摩擦による縤維屑発生は避けられない。

第2はクリーンルーム内へ搬入使用きれる機材や機器 に伴う塵あいである。当然クリーンルーム内へ搬入する前には，洗浄等の処置がなされるであろうが，これが完全でないことが多い。また薬品などに含まれるものは， ユーザーとしては手の打ちようがないので，そのまま持 ち込まれることになる。

第3は作業操作によって装置内やクリーンルーム内に発生する塵あいである。

これらは加工操作に伴うものであるから，簡単には避 けようのないものである。装置の構造や作業のやり方を

工夫して，発生塵あいの影響を出来るだけ少なくするよ うに努力する以外にない。この場合注意しなければなら ないのは，新しく発生し目に見える様なものよりも，作業前から装置内等に残留するものの始末がどうなされて いるかであるう。

装惪内部は一般に複雑な構造になっていて，普通には細部にわたる抒除はし難い状㮩になっていることが多い。

特に真空鼡着装置などのように排気するものでは，機構の㓌に残留した塵あい等が内部空気の排出に伴って舞 い上がり，折角清浄にしたウエーハ等の表面に萑積した り付着することが考えられる。これは直接人手で制御で きない密閉容器内での現象であるので，起こってしまう と処惪の仕様がないのである。装置の桠造や䅡類は使用者によって異なるので，共通的な処方は困難である。し たがって各使用者ごとに装置に適した効果的な対策を考 え実行することが望まれる。要するに各作業段階のスタ ートで装置内糜あいの残留度チェックを注意深く行い， その除去に情重な配虑をすることであろう。

4．薬品中の廦あいと微細加工

実を云うと，現時点での諸薬品中の埌あいが，通常の半導体加工において重大な支障を来たしたということは，賽聞にして余り鬥かないし経験もしていない。しかし実際には失敗の原因が薬品にあるのか，作業者の技術にあ るのか分明でない場合には数多く遭遇している。障害の原因が確実に薬品にあるとは云えないが，半導体屋の多 くが使用薬品の品質に神経を尖らせているのも事実であ る。

これは前述したように極端なまでに微細化した加工寸法を間違いなく実現するためには，あらゆる点で出来る だけのことをするべきであり，薬品も例外ではないとす る考え方から出ている。すなわち＂疑がわしきは罰する＂ とする考え方が基になっている。それでも実際問題とし で，他の资材に比べると薬品への風当たりがソフトなの は，薬品がある程度満足すべき性能を持っているほかに，極端な微細加工部分がドライ化されたことに主な原因が あるように思われる。

すなわち従来は殆どあらゆるエッチ加工に用いられた液体薬品は，徐々にではあるが微細加工への適用範囲を ドライ・エッチング法に譲り，比較的マクロな加工や処理にのみ用いられることが多くなったためと考えられる のである。とは云え，まだ液体薬品の適用領域はかなり広く，その品質の向上，確保の如何は半導体産業に重大 なインパクトを与える可能性を持っている。特に以下の加工工程では，例えそのような微細加工デバイスでも現

在の杊工法を踏熟する限り，必ず液体薬品が用いられる ので，薬品中の汚染原因は製品の性能や歩留まりに直接的な影粦を及ぼす恐れがある。
（1）酸化の前処理
酸化処理前のエッチング剤や洗浄剤中の塺あいは，場合によるとウエーハ表面に残留し，以後の酸化膜成長に おいて膜斦に不均質性を与え，微細加工の精度を低下さ せ，時として所期のパターン形成を不可能にすることさ えある。微細な絶縁物粒子は，自己带雨によってウエー八表面に可成り強固に付着し，水洗や有機溶剤の洗浄で は除去できないばかりか，ライト・エッチングを施しても完全には除去されないことは，私も絴験したところである。

また活染源は酸化加熱時に気化したり，分解したりし てウエーハ内や酸化膜内に拡散などで信入することも考 えられる。こうなるとウエーハや酸化膜の特性の不安定性の発生にも結び付くので軽視できない。
（2）レジスト塗布処理
レジスト膜の荼布時にも，それ以前の薬品処理の操作 でウエー八上に固形異物でも持ち込まれるとすると，場合 によっては重大な結果を招くことになる。すなわち酸化膜形成の場合と同じように異物の介在は機械的にレジス ト膜の均钼性を强ない，正確なレジスト・パターンの形成が不可能になる。また異物が露光用の光に対して不透明なものであると，レジスト剤の感光状態にも影響し，露光部の残るネが型では，異物部の舽光不足によるパタ ーンの久落が起こり，一方露光部が除去されるポジ型で は，踣光とは余り関係ないが，パターン部のレジスト膜 に厚さの不均一を生じてピンホール等の発生につながる恐れがある。さらにレジスト剤に溶解するような異物は ネが型，ポジ型を問わずに膜質の少化を来し，パターン の形成不良やウエーハからの膜の剥離等の原因になるこ とが考えられる。
（3）拡敖処理
半導体デバイス作成には，接合を作る目的以外にも抵抗値の調整，異極性（基盤と）領域の形成等数多くの不純物拡散工程が必要である。拡散域の露出基盤面の污れ は，高温処理によって除去されるものと，不純物と同時 に基盤内部へ拡散して拡散領域の不純物分布に異常を生 じる原因になるものとがある。一般に前者は殆ど問題に ならないが，後者の場合はその影響が接合部に及ぶと，接合は部分的に不均一になり，電気的特性が所期値から ずれることにもなり兼ねない。

またこの後者のような汚染源が高温処理時に気化する ようなものであると，被害は拡散炉心管全体に波及して，多数のウェー八特性を不良にするなどの重大な事故にな

ることもあり得ることは酸化膜の項でも述べた通りであ る。

5．最近のクリーンルーム

以上のような微細玑工の作業をする最近の半導体工場 は，極端なまでに塺あいを排除したクリーンルームを主体として構成されている。

一般にクリーンルームの湱浔度の尺度としては，古く米国のNASAが決めた1立方フィート当りに存在する直径 $0.5 \mu \mathrm{~m}$ 以上の塵あいの個数を以って表わす所謂＂ク ラス＂がある。

我が国でクリーンルームを採用している産業では，半導体分野が質，量共に最高を誇っているが，この領域の クリーンルームでもその清浄度は近々10年位前までは最高でもクラス 100 位であった。すなわち 1 立方フィート中に直径が $0.5 \mu \mathrm{~m}$ 以上の塺あいが帔低 100 個程度は存在 するものであったのである。特別に塵あいを嫌う部分の加工処理はクリーンベンチを併用して対処した。

しかし半導体デバイスの製造加工寸法が微細化するに つれて，これでは対処できなくなって来，再び塵あい対策問題が表面化し，空気フィルター等に一段の改良が加 えられることになったのである。その結果得られる清浄度が上昇して，クラス数が 1 以下にもなる状態が実現す るようになった。元来クラスという単位は正の整数の概念において決められたものであるから，それを小数で表 わさざるを得なくなると直貨的に理解し難くなる。しか も半導体屋の清浄度に対する要求は止まるところを知ら ず， $0.5 \mu \mathrm{~m}$ 粒径で決めたクラスの概念は益々実際と遊離 することになってきたので，坟近は媩測尺度である塵あ い稙径を $0.3 \mu \mathrm{~m}$ にして表現されたクラスを用いるように なっている。前述したようにこのクラスの名称は $0.5 \mu \mathrm{~m}$粒径に対するものであるが， $0.3 \mu \mathrm{~m}$ 粒径によって換算す ると大気塵あいの場合略々一析程度大きくなると云われ ている。

現実には $0.3 \mu \mathrm{~m}$ 粒径でクラス 1 からクラス数万という数値がクリーンルームのクリーン度として管理の対象に なっているから， $0.5 \mu \mathrm{~m}$ 粒径を基準尺度とした時代から すると，その管理限界は遙かに敛しいものになっている のである。

因に $0.3 \mu \mathrm{~m}$ 粒径でのクラス 10 は，現在ではそれほと珍 しい雾囲気ではなく，通常の作業域にも適用きれている が，これを $0.5 \mu \mathrm{~m}$ 粒径でのクラスに換算すると略クラス 1 となって， 64 Kb を試作したときには極めて実現困難 であった数値になる。 $0.3 \mu \mathrm{~m}$ 粒径でクラス 1 乃至はこれ より高いクラスの雰园気も，特定の作業域用としては実

現されつつある。 $0.3 \mu \mathrm{~m}$ 粒径で計测されているクリーン ルーム用の空気フィルターは，原理的には $0.3 \mu \mathrm{~m}$ 粒径以上のろ過能力をもっていればよいうけであるが，これで は不十分で，実際には $0.1 \mu \mathrm{~m}$ 粒径以上のろ過能力有す るものが用いられている。
$0.3 \mu \mathrm{~m}$ の尺度もやがて $0.5 \mu \mathrm{~m}$ 尺度と同じ運命を辿るこ とになるのは，火を見るよりも明らかであって，極めて近い将来 $0.1 \mu \mathrm{~m}$ 尺度の導入が必要になろう。清浄度が上がる度に新しい粒径尺度を必要とするような現行のク ラス表示は廃止すべきではないかと考えている。

以上述べたように極端な制限化に䍜かれたクリーンル ームはもはや部屋と云うより，製造装置の一種と考える べきであろう。

このような雰囲気内で，上述した微細加工対象物に対 して使用される薬品が如何にあるべきかを容器の問題も含めて十分に考慮しなければならないことは論をまたな いところであろう。

6．あとがき

最近の薬品製造工場では，遅ればせながらクリーンル ームを採用するところがでてきたが，以上のような半導体加工の実状をよく把握し，単にクリーンルームを設備 するだけでなく，その目的が果たされるような連用がな されなければならない。

すなわち顧客の利用場所まで，如何にして薬品を污染 から守るかを容器，運搬方法も含めて総合的に検討し，
 ようにすべきであろう。このためのクリーンルームの役割をどうするか，またクリーンルームの機能をどのよう にしなくてはならないかをよく考えて運用する必要があ る。一般的に考えられる薬品関係工場クリーンルームの役割は大きく分けて次の 2 通りになる。すなわち（1）薬品 の製造中の塵あい混入防止，（2）薬品の容器充橲中の塵あ い混入防止を内容とする第1グループと，（1）容器類の汚染防止，（2）運搬中の汚染防止に関する第2グループとで ある。

第1 グループは薬品の中味に関するものであり最も重要なものである。

製造中の塵あいや汚染源の混入防止には使用材料の吟味が第1であろうが，それにもまして，それらを取り扱 う環境の清浄化が必要なことは当然で，ここにクリーン ルームの役割が存在するのである。

また容器への充壃作業中の塵あいの混入は，主として反応装置内で進行する製造過程の場合と異なり，外気中 での操作になるので極めて高い頻度で起こる可能性があ

ク注意を要する。
この過程では容器内壁に付着している塵あいの有無の検査すなわち容器洗浄度のチェックと容器内空気の湇浄化が絶対に必要な項目である。

このような観点からすると，充填環境の清浄度維持が どのようになされるかが問題になるが，これはクリーン ルームの果たす役割そのものである。

大型で複雑な製造装置類を全てクリーンルーム内に収容することは事実上不可能であろうから，清浄化の必要工程を選別し，個々に効果的な処置を講ずることが望ま れる。

第2 グループの処置はどちらかと云うと，使用する段階での煩雑な操作をユーザーに課さないためのものであ るう。

一見第二義的な事柄のように見えるが，ユーザーであ る半導体屋にとっては直接的，効果的事項になるのであ る。
すなぁちクリーンルームへ搬入される薬品容器類に伴 う塵あいを除去するためには，特別な洗浄等をしている のが現状である。もしメーカー側で十分な防塵対策を講 じてあれば，これらの工程を省くことができるばかりで なく，突発的な要求にも迅速に応じられるので，洗浄備蓄的なことも避けられ時間的，経済的な効果が大きいと考えられる。最近は容器の大型化に進んでいるので，以上のような処置の効果のほどを低く評亚する向きもある が，大型であるからこそ一旦汚染するとその及ぼす影賠 は大であるし，他に少量容器を要する薬品も多いので，

十分な配慮が欲しいところである。クリーンルームの適当な利用がなされれば，可成りの効果が期待できること は明らかである。但しクリーンルーム設置や諸々の検查項目の付加で，薬品の価格が高くなることは厳につつし んでもらいたい。薬品には本来洿染源が入っていないの が，当たり前であると云う考え方に立つことを希望する次第である。

半導体屋はやたらに高級な薬品より，一定品質の薬品 を欲していることを理解すべきであろう。実際には，塵 あい等は薬品よりも周囲環境の方から導入されることの方が多いが，現在のような超微細加工においては，考え られるあらゆる部門の管理を徹底することが必要である ので，薬品と共に導入される僅かな塵あいや汚染源でも厳しく制御されることが望まれるのである。特に薬品の場合は，半導体屋は与えられた受け身の形でしかタッチ できないので，薬品メーカー側の十分な管理施策を期待 するところが大なのである。

薬品内に汚染源が存在することへの批判を緩和する理由として，薬品処理後は必ず純水による微底した洗浄が行われるということがある。この純水洗浄は処理後に残留する有害物を除去する効果を有するのも確かであるが，問題は薬品中の汚染源が，薬品の活性に及ぼす微妙な影響や反応生成物の組成に与える影楽が，超微細加工におう いてどのようなインパクトを生ずるかである。

すなわち同一条件，同一反応ということに薬品内不純物が物理的，化学的にどのような関わりをもつかはつき りしない限り，一応嚴しく監視されるべきであるう。

M－bitへのステップ

- 半導体用薬品ELSシリーズ
- 薬品自動供給システム
ズ

装
霜 䇣品供給䒾置にはCicaカートリツジフィルター（フッ索系樹脂製）を備えて おり，いつでも，タストフリーの楽启が供給できます。楽品の取出しはユー スボイントからの電気的信号により容易に行なえます。

- 大型自動荣品供給システム：客先仕様により設計•施工
- 中型自動薬品供給システム：LS－100（100e $\times 2$ ）
- 小型目動楽品供給システレ：S－wagon（ $15 \sim 20 \ell \times 2$ ）

フィルター フツ素系樹脂製カートリツジフィルター（各種ボアサイス）
－Cicaカートリッジフィルター
－Cicaカートリッジフィルターユニット：2本組，4本組，8本組，その他 （フィルター内部は使用薬品にて前処理いたします。）
薬 品 酸・アルカリ・一般溶剤
－ELシリース
－ELSシリース（タストフリー）

本
带子材料事業本部

関東化学株式会社

社 103 東京都中央区日本橋本町3—2－8
ㅈ(03)279-1751 (大代)

个103東京都中央区日本橋大伝馬町3—2 （秀和第2日本橋本町ビル）て（03）667－6811代

私 の古 生 物 誌（7）
 ——毛に被われた翼竜——

千葉県衛生研究所 医学博士 福 田 芳 生

翼竜の発見

大空を自由自在に飛んでみたいという願いは，どうも人間ばかりではなく爬虫頪にもあったようです。人間は智葸を働かせて，機械の力で空を飛ぶようになりました。 でも，爬虫類は自分自身の身体を㧴行に適するように変 えざるをえません。
始祖鳥として知られているアルケオプテリックス（古代の巽）は羽搏くための刖筋が沫発達で，単に木の枝か ら枝へ消空するトカゲというにすぎません。翼に付いて いる 3 本の鈎爪は，物をつかむのに用いたのでしょう。樹上にいる昆虫やトカゲを鋭い歯で捕えて，食べていた というわけです。始祖点の粎を調べた学者は，その磨耗 の様子が，同様な食性を持つ小型のトカゲにそっくりな ことを報告しています。時には地上の爬虫類や魚の腐肉 も食べたことでしょう。もちろん，現在の鳥類に見られ るような＂砂ぎき＂は存在していませんでした。
鱗が形を変えた羽毛は消空する際，飛翔能力を高める ことと，体温の低下を防いだのです。そして，温血であ ったと考えられています。

このアルケオプテリックスとは別に，大空を目ざした一群の爬虫類がいました。それは濽音と呼ばれているき ので，今から 2 偣年以上昔の吉生代末に最古の翼竜が姿 を現わしています（図1）。それは現代のコウモリに以た姿をしていました。1784年に物好きなイタリア人，コス モ・コリーニが，ドイツのバヴァリア地方にあるジュラ

図1：世界最古の翼竜，ユーディモルフォドンの頭骨。北部イタリアの二畳祋産（ペーター・ヴェルンホーファ ーより改写）

紀の地首から偶然の機会に手に入れた巽竜の化石が，人類が翼竜に接した世界最初のものとされています。

コリーニは当初，得体の知れない海の怪物の遺骸であ るという，全く見当はずれな意見を述べていました。フ ランスの落名な解剖学者キュヴィエ男爵は，コリーニが手に入れた化石を丹念に調べました。細長い上下の顎に は鋭い㐘が並び，澒の閊側に大きな目を持ち，トカゲに良く似た背青と是がありました。第 4 番目の指が異常に伸長して怪い管状の骨に変わり，コウモリのような翼を持った爬虫類であることが明らかになり，翼竜と名付け られたのです（図 2 ）。㴓竟の大きさは種によって異なり ますが，大体カモメからオオコウモりぐらいの間と考え れば良いでしょう。

図 2 ：翼竜，ランホリンクスの骨格復元図（ウイリスト ンによる），左はランホリンクスの腹側の骨格を示す （ストローマーによる）

翼竜は左右の翼にある朵の生えた 3 本の指を動かして物をつかんだり，木にぶら下る時，身体を支えたのでし ょう。翼竜は潟や海岸の高い岩場に集を造って，ギャー ギャーとやかましく鳴き叫びながら，群をつくって生活 していました。バヴァリアのゾルンホーヘンは，きめの細かい石灰分を含んだ灰白色の頁岩層が発達していて， ジュラ紀後期の保存の良い化石産地として有名です（ジ ユラ紀後期には，このような灰白色の頁岩層が広く分布 しているので，白ジュラと呼ぶことがあります）。

ゾルンホーヘンはもともと，印刷用の石版石の採掘場 であったのです。きめの組かい頁岩の表面に印刷用の文字や図を刻んで，インクを付けてプレスすると，次から次へと本や新聞が刷り上るというわけです。

この石版石を採掘している时，作業場の石工はしばし ばすばらしい化石に巡り合うことがあります。それを監督の目の届かない所にそっと隐しておいて，仕事が終っ てから持出し，町の好事家に倠よく売りつけるわけです。

翼竜は本当に毛て被われていたのか

をて，今から150年以上も前に，ボン大学で動物学を担当していたゲオルク・ゴルトフス博士は，ゾルンホー ヘンの石切り場から出てきた奖滝ランホリンクスの飛翔用の皮膜表面に゙ある奇妙なブツブツに目を付けました。

それをゴルトフス博士は細かな毛穴の痕に違いないと考え，翼竜に毛が生えていた動かぬ証拠を見つけたとし て，学界で発表しました（写真1）。

写真1：みごとな頨の皮膜の印象を残したランホリンク スの化石（クーンによる）

会場のあちらこちらから失笑と嘲りの混った声があが リ，翼竜に毛が生えていたとするゴルトフス博士の見解 は葬り去られてしまいました。更に悪いことに，1908年 になってミュヘン大学の教授カール・ワンデラー博士が ドレスデンの博物館まで出掛け，ゴルトフス博士の主張 したランホリンクスの毛の痕跡と称するものを，疑い梁

そうに目を細めて調べたのです。
最初から，こいつは怪しいとにらんで調べるのですか ら，そこから出てくる答えはゴルトフス博士の主㯑と具向から対立するものでした。「こんな下らんものに時間 を割いた私が馬鄜だった，これは化石を運んでくる途中 に，岩の一部が剥離した痕にすぎん」というものでした。 カール・ワンデラー教授が軽く鼻であしらった標本につ いて，吉生物学のプロ，フェルディナンド・ブロイリー博士は，再びゴルトフスの説を支持し，「なんならコウ モりの毛穴と比較して決着をつけましょう」と意気まい たのですが，学界から何の反応も得られませんでした。 それは時期が悪かったとしか言いようがありません。そ の頃ドイツでは，ヒトラーの率いるナチスが台頭し，世情が騷然としていて，とても浮世離れした古生物学の論争どころではなかったのです。

遂に毛に被われた翼竜が見つかる

激しい第二次世界大戦が終って平和が訪れ，ふとした事からゴルトフス，ブロイリー両博士の主張の正しかっ たことが認められる日がきたのです。それは1970年にな って，ソ連の吉生物学者シャロフ博士が中央アジアの力 ザフスタンで，ジュラ紀後期に属する湖の堆利物の中か ら，すばらしく保存の良い翼竜の化石を発見したことに よって，生意気なカール・ワンデラー教授の罗をあかす ことになったのです。

シャロフ博士の見つけ出した小型の翼竜の皮膜表面に は，細かい毛がびっしりと生えていました。そして，ソ ルデス・ピロススという学名が付けられたのてす（図3）。 ソルデス・ピロススというのは，不潔な毛を意味します。 どうして不潔なのか理解に苦しみますが，ロシア語では毛の生えた悪魔ということになるのだそうです。篚者は ロシア語の方が現実的な気がします。この標本は現在， ソ連で国笑級の扱いを受けています。

羄竜はハンググライダーのように空を飛びます。その時，冷たい空気にさらされるので，保温のために毛が必要だったのです。今日，私達を悩ませている毛ジラミの起源は，このソルデス・ピロススの時代まで遡って考え る必要があるでしょう。翼竜は鳥類と同様，温血動物で あって，絶えず一定量のエネルギーの供給を受けていた と考えられています。

買竜の生活

潩竜の脳は鳥に似ていて，小脳が大きいことが特徴で す。それは飛行のため，平衡感覚が特別に発達しなけれ ばならなかったからなのです。翼竜の食物は魚でした。

図 3：全身細かな体毛で被われた置竜，ソルデス・ピロ スス（ソヴィエト科学アカデミーの好意による）

図 4 ：頭から魚を丸呑みにした瓆竜，ランホリンクス。胃の存在していた肋骨の間に魚が見える（ペーター・ヴ ェルンホーファーより改写）

ドイツの若い古生物学者ペーター・ヴェルンホーファー博士は，バヴァリアから出てきた翼竜の胃の中に，頭か ら丸吞みにされた魚が入っている遺骸について報告して います（図4）。このヴェルンホーファー博士の研究によ って，翼意はうまく気流に乗って海面を低く飛び，鋭い口ばしで魚を捕え丸吞みにしていたことがわかりました （図5）。巽竜の口ばしにある歯は獲物を嗶み切るのでは なくて，尃ら㬸物を保持するための装置なのです（図6）。

図5：魚を捕食する睤竜，ランホリンクス

図6：翼竜，ランホリンクスの頭骨。鋭い針のような歯 が外側に向かって生えていることに注意されたい （ペーター・ヴェルンホーファーより改肎）

消化管は短かく，排泄物を腸内に溜めておく事は無か ったと思われます。バヴァリアから出てくる翼竜に，ク テノカスマ・グラシルがあります（図7）。この学名は，
くしの歯を意味します。このクテノカスマ・グラシルは ランホリンクスやプテロダクチルス（写真2），スカホグ ナサスとは全く異なっています。細長い上下の口ばしの内側に，ヒゲクジラに見られるような細いブラシ状の突起が密生しているのです。

図7：䨘竜，クテノカスマ・グラシルの頭骨，下は地層中より発掘された時の様子（F．ブロイリーより改写）

写真 2 ：バウァリアのソルンホーヘン産の置竜，プテロ ダクチルス（クーンによる）

多分，クテノカスマ・グラシルは海中に突入してアミ のような小型の甲殼類をさっとすくい取り，細長い突起 の間から海水を流し去って，口中に残った餌を吞込んで いたのでしょう。あるいは浅瀬で，フラミンゴのように口ばしで小魚やエビを捕える際に使用したのかもしれま せん。

巽竜は海面を低空飛行していたため，運悪く首長竜の

埴になったものもいました。夜が明ける，と陸地を雄れて海上に出て瓳を漁り，日が傾くと巣に戻るといった毎日 を送っていたことでしょう。卵を産んで繁殖したと考え られます。もし胎性であれば，長期間子供を体内に宿し たまま飛び続けなければならないのですから，その負担 は翼竜にとって大変なものだったと思います。喉の所に ペリカンのような袋があって，捕えた魚を縣えておくこ とができました。きっと，巣の中で持っているヒナに餌 を運んでいたのかもしれません。

翼竜はあくまでハンググライダーのようなもので，気流に乗って飛行していたのです。翼竜は耻後まで，現代 の鳥のように強い胸筋を持ち，自力で飛行することはあ りませんでした。

巽竜は毛で被われた皮膜が破れると，もう飛行できま せんでした。もし飛行を再開できても，それは備が治っ た場合のことです。それまで，じっと休んでいなければ ならないのですから，ひどく能率の悪い飛行装置と言っ ても良いでしょう。また，強風の時は思わぬ方向に運ば れることもあったでしょう。陸地から100キロ以上も離 れた海成層から見つかった翼竜は，その可能性がありま す。そして，現代の海鳥のように塩分泌腺を持ち，余分 の㦈分を体外に排出したに違いありません。

1970年代に入って，アメリカのテキサス州にある白亜紀後期の地層から，翼の全長が $15 \times$ ートルにも達する， まるで現代のジェット戦闘機ほどもある超大形の巽竜の化石が発見されました。この翼竜はケツアルコアトラスと命名されたのです。それは，ヘビに似た身体に翼を持った怪物として知られている，メキシコの最高神の名前です。

ケツアルコアトラスは，上空から腐肉の突いを嗅ぎつ けると，急降下して肉塊をくわえ，そのまま着陸するこ となしに舞上ったと考えられます。值にありつくために着地した場合，アホウドリのようにヨタヨタと歩いたと思われますから，主客転倒してたちまち肉食性恐竜の餌 となったことでしょう。それは正に，自殺行為と呼んで も良いでしょう。

この翼竜も，現代形の鳥類が大空に進出し始めると， たちまちのうちに歌遂されてしまいました。筆者はワイ オミング州の湖の堆積物のなかから出てきた，約5千万年前の鳥の羽毛を手に入れ，電子顕微鏡で観察したので すが，羽毛はフィルム状になっていて，どうしても写真撤影に成功しなかったのでがっかりとたことがあります。初期の鳥の羽毛は，電子顒微鏡下に一体どんな微細構造 を示すのか，機会があれば再度挑戦したいと思っていま す。

食べ物でガンを防ぐ（I）

——癌と食生活——

静岡大学宸学部 教授 農学博士 水 野 卓

1．はじぬに

現代人にとって，ガンは予防法のない㻓大の難病である。 ガンにかかったら特効薬はない。日本人の死因のトップ はガンであり， 1985 年には 187,642 人／死亡 752,259 人 （4人に1人が，3分間に1人の割合）が死んでいる。

中でも胃がん（死者約 4 万人）か欧米諸国に比べて格段に多い（アメリカの8．2倍）。次いで肺ガン，子宮がン，肝㖪ガン，腸ガン，乳ガン，幾臓ガンの順で，消化器系統のガン（死亡約 66,000 人）が非常に多い。

アメリカでの調査資料から，食物とガンには相互関係 があり，動物実験からも因果関係が極めて大きいことが判明した。食物（ 35% ）に次いで，㩃煪（ 30% ）がガン の原因であり，禁煙と食生活の工夫で 65% のガンが子防 できるとしている（ $\mathrm{NCl} / \mathrm{NRC}$ 報告落，1982年）。
発ガン性のチェックに，短期間に判定の出る＂エーム ス法＂（Ames法，Rec法）${ }^{11}$ が開発された。
60年間に䄪 5,000 種の化合物が試験され， 2,000 種（ 40 $\%$ ）に発ガン性の疑いが指摘された。サルモネラ菌の遺伝子（DNA）を狂わせ変異を起こさせるので変異原物質 （Mutagen）と呼ばれ，変異原物質＝発ガン物質（Carci－ nogen）の可能性が高い2）。その強さを2，000万倍の差が ある。多くの食物に発ガン物質が含まれるのは事実であ る。しかし，一方では，夕バコを吸い，酒を飲み，変異原物斦を含む食物を毎日食べながらも，ガンにならない人がいる。むしろ，そういう人の方が多い。その理由の第一は，人間の体には本来，ガン化に対して防衛力（免疫能）が備わっているからである。免疫能か低下したた めにガンになる。第2の理由は，発ガン物斦を解毒した り，排泄したりする能力が食品の中に含まれ，体内に もあるからである。ガン科学の進歩は，ガンの最大原因 が食物にあり，また，ガンを予防するのも食物であるこ とを示した。化学発ガンの予防（発ガンの抑制因子）が食品科学のレベルでやっと論じられるようになってきだ。22）

2．ガンになる要因

物理的，化学的，生物学的要因が，正常縕胞に働いて，不可逆的にこれを悪性の細胞（自制の効かない增殖と転移）に変貌させることが発ガンである。特に，食物中の発ガン物斦が問題になる。

これには 2 種類ある。一つは，仕掛人（火付け役，初発园子，Initiator），もう一つが促進人（扇動者，促進因子，Promoter，代表的なものとしてホルボール類 とテレオシジン類がある）であるという說である 3！更に，第三の因子として完成人（熟成因子，Manifestor，進展因子， Progressor）を考える学者もある。これらは，単独作用 ではガンにならない。この1，2，3の順序で働く場合にガ ンとなり易い（図 1 ）。

図1 ガン発生の過程

ヒトは，生れつきガン遺伝子（Oncogene）${ }^{4)}$ を持ってい ることが明らかにされた。遺伝子（DNA）にガン化 暗号（24ヶの塩基配列が解読された）が組み込まれており，発ガン物斦にさらされたり，放射線に当たったりすると，突然活動を開始してガンの誕生となる。更に，ガンウィ ルスにより伝染するヒトのガンも発見された5。パーーキッ ト・リンパ腫（EBウィルス，アフリカの子供），成人T細胞白血病（ATLウィルス，九州）の二つで，他にもウ ィルス関与のガンが指摘されている。最近，ガン抑制遺伝子（Antioncogene）の存在が判明し興味深い。

TAKASHI MIZUNO

Department of Agricultural Chemistry， Faculty of Agriculture，
Shizuoka University，Shizuoka 422，JAPAN
-16 －Be Careful about One＇s Diet for the Protection and Prevention against Cancer（I） －Cancer and Dietary Life－

3．ガンになり易い食生活

日本人には消化器ガン（食道，胃，小腸，大腸，直腸，肝臓，胆囊，茦萨ガンなど）が圧倒的に多い（ 60% 以上）。いずれも，食物と常に接している器官なので関係深い。食べ物によってガンになる場所が異なる。それは，発ガン物質（発ガン要因）によって働き易い場所と働き にくい場所があるからである。タバコを吸う人，米飯ば かり多く食べる人，塩辛い物をよく食べる人は胃ガンに なり易い。熱い食事や強い酒を常に飲んでいる人は食道 ガンになり易い。また，アルコールとタバコの相乗作用 で食道ガンの発生率を高めている。欧米人に乳がンが多 いのは，動物性脂肪の拈り過ぎである。乳がン発生率は，日本人は欧米人の1／5以下で，死亡率も1／4以下と日本 では少ない。また高腧女性の肥満が乳がンの危険率をた かめている。未婚，晚弤，非授乳なども乳がン発生と関係深い。動物性高脂肪と商然白（特に牛肉）は大腸ガン の発生と促進の危险度を增加ざせる。輸入ナッツ類の発 ガン物質としてアフラトキシンが問題となったが，汚染微生物が生産するマイコトキシン，それに合成染料など は肝臓ガンの原因となる。潇臓ガンはコーヒーの飲み過ぎやアルコールの消費热と相関が高く，膀胱ガンと コーヒーやサッカリン，前立腺ガンや子宮ガンと多脂肪食事，脙ガンと排ガス，など関係が深い。

4．発カン性食品

食物（食要）が発ガン要因となるのは，次の7つの危険因子が考えられる ${ }^{6.7 \%}$
（1）発ガン物所を含むもの（ワラビ，ソテツの実）
（2）保存などが悪く微生物活染で発ガン成分が生成し たもの（ナッツ類のアワラトキシン）
（3）調理によって発ガン物質が生成したもの（㫢け襄 げ物斦）
（4）食べ合わせによって体の中で発ガン物質が生成す る（ニトロソアミン）
（5）発ガン物斦の連搬役（アルコール）
（6）発ガンの促進役をするもの（脂肪）
（7）食ベカのアンバランスや食事の仕方ががンの素地 をつくる（宂食塩，熱い食べ物）
（イ）食品に含まれる発がン物質 ${ }^{81}$
ワラビ（プタキロサイド）${ }^{9)}$ ：若い芽に多く含まれ，調理によって毒性は少なくなる。大量のワラビを食べな ければ心配はない。勝胱ガン，腸ガン，肺ガンを起こ す。フキノトウ，コンフリー，コショウ，パセリー，イ チジクなどの新訝にも存在が報告されている（図2－a）。

ソテツの実（サイカシン）${ }^{8)}$ ：発ガン物質として最強の むのの一つで，動物実験では胃ガン，肝臟ガン，晹ガン を起こす。

図2－a 植物起源の発ガン物斦 ${ }^{9)}$

プタキロサイドの化学構造とその作用本体（ワラビ）

Petasitenine

フキタンポポの発癌性アルカロイド

Kaempferol

Quercetin

Galangin

変異原性を示すフラボン類

図2－b 植物起源の発癌プロモーター21）

ホルボール類（Phorbols）
タカトウダ科のハズ（Croton figlium）
の油から最初に見いだされた発癌プロモータ
ーである。

	R_{1}	R2
TPA＊	tetradecanoate	acetate
	$\left(\mathrm{CO}-\left(\mathrm{CH}_{2}\right)_{12}-\mathrm{CH}_{3}\right)$	$\left(\mathrm{COCH}_{3}\right)$
APT	acetate	tetradecanoate
PdiC_{8}（PDD）	octanoate	octanoate
PdiC10	decanoate	decanoate
HPA	hexadecanoyl	acetate
PdiC_{2}	acetate	acetate
Pdibenz	benzoate	benzoate
PdiCl_{4}	tetradecanoate	tetradecanoate
PDBu	butyrate	butyrate
Phorbol	H	H

アプリシアトキシン類（Aplysiatoxins）
海蒲Lyngbya majusculaから単離された。

	R_{1}	R_{2}	R_{3}
デプロモアプリシアトキシン	H	H	H
アプリシアトキシン	Br	H	H
ブロモアプリシアトキシン	Br	Br	H
シプロモアプリシアトキシン	Br	Br	Br

水道水（トリハロメタン）：水道水に含まれる発がン物質で，殺菌剤の掹亚（カルキ）がフミン物質と反応して生成する。クロロホルム，トリクロロエチレン，テトラ クロロエチレンなどは肝臓ガンを起こす。一方，トリハ ロメタンは焼け焦げの発ガン物質を解毒する作用（善玉） があることがわかった。

食物につくカビの発ガン性（アフラトキシンB1など のマイコトキシン）：ナッツ類，古米，ハトムギ，味噌な どの污染により肝㰅ガン（図3－a）。

図3－a 微生物起源の発ガン物斦

B1

G！

B_{2}

G2

Aflatoxins

M_{1}

M_{2}

Aflatoxins

Sterigmatocystin

ピーナッツのカビ Aspergillus flavus の生産毒素（発癌性）

Luteoskyrin

Cyclochlorotine

黄変米の発癌成分
図 3－b 微生物起源の発癌プロモーター ${ }^{21}$
テレオシジン類（Teleocidins）
放線菌 Streptomyces mediocidicus の菌采体から分離を れた。

テレオシジンB（Teleocidin B）

ジヒドロテレオシジンB（Dihydro－teleocidin B）
21，22位に水素添加したもの

から $\mathrm{IQ}, \mathrm{MeIQ}$ ，大豆グロブリンから $\mathrm{A} \alpha \mathrm{C}, \mathrm{Me} \alpha \mathrm{C}$ ，牛肉からMeIQxなど。動物実験で，魚や肉など蛋白質の烄け焦げ物質を食べさせると肝臓ガン，肺ガン，腸ガン，肉腫などが発生した。

変異原補助物質：細胞に直接変異を起こさないが，他 の物質に狂いを起こすことを助ける物質がある。ハル『

ン（1－メチル－β－カルボリン）やノルハルマン（ β－カルボ シ，焦げた牛乳，マッシュルーム，日本酒などに含まれ リン）が穊いたパン，タバコのや二，焼いた牛肉やイワ る。

表1 燃け焦げ成分から単離された変異原物質 ${ }^{10)}$

化 合 物 名	略省名	桃 造 式	加熱材料
3－amino－1，4－dimethyl－ 5 H －pyrido $[4,3-b]$ indole	Trp－P－1		DL－トリプトファン
3－amino－1－methyl－ 5 H －pyrido $[4,3-b]$ indole	Trp－P－2		DL－トリプトファン
2－amino－6－methyldipyrido－ ［1，2－a：3＇，2＇－b］imidazole	Glu－P－1		L－グルタミン酸
2－aminodipyrido－［1，2－a： $3^{\prime}, 2^{\prime}$－d］imidazole	Glu－P－2		L－グルタミン酸
4－amino－6－methyl－1 $\mathrm{H}-2,5,10$ ， 10b－tetraazafluoranthene	Orn－P－1		L－オルニチン
2－amino－5－phenylpyridine	Phe－P－I		L－7ェニルアラニン
2－amino－9 H －pyrido［2，3－b］indole	A α C		大豆グロブリン
$\begin{aligned} & \text { 2-amino-3-methyl- } 9 \mathrm{H} \text {-pyrido- } \\ & {[2,3-b] \text { indole. }} \end{aligned}$	$\mathrm{MeA} \alpha \mathrm{C}$		大豆グロプリン
2－amino－3－methylimidazo－ ［4，5－f］quinoline	IQ		丸干しイワシ
2－amino－3，4－dimethylimidazo ［ $4,5-f$ ］quinoline	MeIQ		丸干しイワシ
2－amino－3，8－dimethylimidazo ［ $4,5-f$ ］quinoxaline	MeIQx		牛 肉

（口）食べ合わせ発ガン食品 ${ }^{11)}$
ニトロソアミン ${ }^{27}$ ：図4に示したように，食品に含ま れる西硝酸とアミン類によってつくられる強力な発ガン物斦である。亜硝酸盗は，ハム，ソーセージなどの変他防止剤，防腐剤であり，単独では発ガン性は無い。また，野菜などに含まれる硝酸壏に口の中の細菌が作用しても つくられる。アミン類はアミノ酸の一種，魚貝類に含ま れ，解熱剤（アミノピリン），精神安定剤，抗ヒスタミン剤などがこれに属し，いずれも口に入る物質で，単独で は発ガン性はない。この二つが，胃の中など酸性の場で化学反応を起こして強力な発ガン物質ニトロソアミンに なるから恐ろしい。

ニトロソアミンは60数種もあり，種類と浓度が䀧なる とガン化の様子も達ってくる（脳腫瘍，肝葴ガン，食道 ガンなど）。ビール，味噲，醬油，日本酒，ベーコン， チーズなどにも含まれる。

相乗悪作用：飲酒＋喫煙の例がある。強いアルコール で食道粘膜がただれ，タバコの煙に含まれる発がン物質 がアルコールに溶け，消化器から透過し易くしている。口腔，咽頭，食道，肝臓ガンの発生率が高くなる。脂肪 の取り過ぎが乳がン，大腸ガン，前立腺ガンの発生率を高める。

過酸化脂質はガンの促進因子として働く。コレスデロ ールは腸内細菌によって促進因子に変化する。胆什酸 （コール酸）にも促進作用がある。更に，食べかたのア ンバランスがガンの素地をつくる。食塩の哲り過ぎ，良質の蛋白の不足，常に熱いものを飲み込んだりしている と胃ガンになりやすい。

参考文献

1）B．N．Ames，J．McCan and E．Yamasaki ：Mutat．Res．，31， 347 （1975）．
2）長尾美奈子：癌＇ $80, \mathrm{I}$ ，化学発癌 2,1301 （1980）；䍃＇ $84, \mathrm{I}$ ，化学発癌 3,699 （1984）〔中山害店〕．
3）山崎 洋：癌＇ 80,1 ，化学発㽾 3,1311 （ 1980 ）〔中山桨店〕．
4）高野利也：発癌逝伝子，p． 40 （1984）〔講談社サイエンティフィ ク）；清水憲二：歪白斦核酸醉素，31，473（1986）；佐々木博己：化学と工業，39，627（1986）．

図4 発ガン性ニトロソアミンの生成経路 ${ }^{11}$

5）Y．Hinuma et al．：Proc．Nat．Acad．Sci．，USA，78， 6476 （1981）．
6）水野 卓：The Chemical Times， 90,1569 （1978）；91， 1583 ； 92， $1608 ; 93,1629$（1979）．
7）高山昭三：癌＇ $80, \mathrm{I}$ ，化学発痖 $1,1293(1980)$ ．（中山書店）．

9）広野 厳：癌＇ $85, \mathrm{I}$ ，化学発痖 3,719 （ 1985 ）〔中山挌店）．
10）若林敬二：癌＇ $82, I$ ，化学発痞 1,939 （1982）（中山望店）．
11）西 満正，山根一真：ガンになる危ない食べ合わせ，pp．1～ 140，pp．141～243（1986）（静春出版社）．

くすりの文化交流（3）
 ——夏の花の毒とくすり——

花と人間

最近の推計によれば，戦後生まれの人数が，総人口の約 60% に達したといわれ， 8 月 15 日の終戦記念日の歴史的意識も薄れつつある。遠いあの日の追憶の中に，夏の盛りの烈日に燃えるような夾竹桃の真紅の花影が，象徴的な共感を誘う。

戦後の名状し難い苦難から立ち上がり，経济大国に飛躍したのもつかの間で，貿易摩擦の矢面に立たされて，国際的な広い視野と良識が求められている。

一方，科学技術の日進月歩で地球は狭くなり，限られ た資源開発の自然破壊の中で，改めて空気や陽光や雨水 などの偉大な自然の志みを思わずにいられない。

素朴な野の花にも心の安らぎや愛着を党えるのは，花 も人間も造物者によって出現し，共存する自然の一分子 の存在感が本能的に选るからであろう。祝福に花束を贈 リ，仏前に香華を手向ける萁情の披歴が慣習に定着した。原始人の知性と本能によって，花に潜在する薬用性を発見した。体系化する過程で，薬は不可解な病気退散の宗教的手段に用いられた。しかし薬が諸邓の剣で，用法 を誤れば薬変じて毒性を現わす微妙な組成も天の配剤に ほかならない。

余談はざておき，夏に咲く花は草本類が多いなかで， インド原産の夾竹桃は常緑の花樹で，観賞用のほかに薬用成分がある。夾竹桃の名は，披針形の硬質の葉が竹葉 に近似することに拠る。強心配糖体を含有する葉は強心薬に用いる。

日本列島は北と南の気候風土の多少のずれから，花の品種や開花期にも影等を及ほしているが，在来種から外来の種類も多様化して特色づけている。

楽用と毒成分を含む夏の花のなかから，目ぼしいもの を抜き出すと，ハス，アサガオ，ザクロ，ガマ，ニンド ウ，クチナシ，クコ，ュリ，ドクダミ，ゲンノショウコ， ケシ，ドクゼリ，ドクニンジン，マンダラゲ，タケニグ サ，タバコなど多種である。

ハスの永遠の生命力

インド原産のハス Nelumbo nucifera Gaertn．は，東洋各地の池や沼に自生し，水田に栽培される多年生䓬本 で，而の朝まだき，清籠な大輪の美花がポンと音を立て るように鮮やかに開花する。

泥中の活濁に染まぬハスの花の一種荘厳な自然現像を，仏教では蓮華といって，人間が様々の試練を乗り越えて到達する極楽浄土の理想郷にたとえた。極楽世界の象徴 である阿湖陀如来は，莲華文様をかたどった蓮華台座に
本尊として信仰をあつめた。

仏教の伝来（583）にともなって，種々の大陛文化が導入されたが，漠薬はとりかっけ重要な渡来品であった。漠薬のなかでも，ハスの果実（莲実）と，その果皮を除去 した蓫肉は，強壮薬，婦人薬として重用される。葉は茂葉，または荷葉の名称で，止血，解毒，または夜尿症に用いる。

ハスの根茎つまり蓮根は，今はもっばら食料品に属し ているが，昔は滋養強壮剤であった。その成分研究によ って，アスパラギン（約 2% ）その他のアミノ酸が検出

SOYOKO NEMOTO，Ph．D．
The Japanese Society of History of Pharmacy

され，経験によって体得した古代人の溆智に敬服させら れる。

奈良の当麻寺に約1230年前，藤原豊成の娘中将姫が参籠して，蓮糸で址䌐な極楽浄土図を織ったという＂蓮系蔓荼䧼＂が，国宝として伝わっている。

ハス博士として潽名な植物学者，故大賀一郎博士 （1883～1965）が ハスの研究に生涯を睹けた動機は，明治42年（1909）東京帝国大学理科大学植物学科を卒業後，大連の満鉄に在職中，普閑店から出土した古いハスの果実（蓮実）との出会いが発端となった。

戦後，東京女子大学教授に転じた昭和 25 年，千葉滑引 から1200年前の連実が発掘された。更に翌年同検見川か ら2000年前の㦁実の発見を機に，博士はハス研究のとり ことなった。2000年の悠久を生きつづけたハスの強靱な生命の再現にひたむきに打ち込んだ。ついに昭和 27 年 （1952）検見川から出土した蓮実の発芽に成功し，見事 に開花して＂大賀ハス＂として，植物学者の名声を高め た。

搏士のハス研究の意欲は，当麻寺蔵の国宝，蓮糸曼荼羅が果たして椸弱な茂の繊維だけで，精細な浄土世界像 を織り得たかどうかに興味が集中した。熱意を傾けた調查研究の結果，蓮系と絹系を用いたことが解明された。 この顕著な業綃によって昭和36年，大賀博士は紫綬褒章 を受けた。

夏の風物餻アサカオの利用価値

ヒルガオ科のアサガオ Pharbitis nil Choisy は，熱帯 アジア原産で，nilはアラビア語の藍色の意から，原種 は青色花だったといわれる。アサガオは早朝開花の語意 から和名である。

中国には1500年前頃に伝わり，牽牛花という名の薬草 として栽培された。種子は渶薬の举军辛で下痢，利尿剤 とする。率牛子は1000年前の平安期に渡来して，貴族た ちの常備楽に大量輸入されるようになった。当時の舶来薬品は底民には手の届かない貴重薬であった。

江戸中期には貿易や商業の発達によって，幕府の財政 を支える富裕商人が台頭し，町人文化が栄えた。そのよ うな風潮の中で，朝の早い勤勉な庶民にとっては，寝覚 めをさわやかにする色とりどりのアサガオは，庶民の夏 の風物詩として愛好された。どこの家にも観賞用のアサ ガオを栽培して花を競い合った。種子は家庭薬として家族の健康に備えた。

花も実もあるアサガオへの郷愁は，今も台東区入谷の朝颜市の貦わいに偲ばせている。

石榴皮 pelletierine 余話

イラク，インド原産のザクロ Punica granatum L．は，

中国では石榴の名で楽用効果が研究され，石榴の根皮， つまり吡榴䐂の条虫駆除の効能が確認された。日本には条虫駆除の漢薬•石榴皮として渡来した。赤色の果実は食用にするが，果皮にも根皮より劣るが同様の薬効があ る。和名のザクロは落薬高木の闧芸用に栽培される。

1860年フランスの薬剤師 J．Tanret は石榴皮のアルカ ロイドを発見して pelletierine と命名した。大先䡛のパリ大学生薬学教授 J．Pelletier は1820年，Caventouと共に キナ皮からキニーネ，ホミカ子からストリキニーネその他，最も多くのアルカロイドを発見したが，一つも特許を取 らず，治療界に裨益した功䋶により，フランス政府は2人の立像を建造して顕彰した。

Tanretはこの Pelletierの人格に傾倒して，自身の発見した石榴皮のアルカロイドに誇り高き Pelletierine と命名したのであった。

漢薬の山麻子はクチナシの実

アカネ科のクチナシ Gardenica jasminoides Ellis は常緑の花木で，大輪のふくよかな白色の花冠は芳香を放ち，観賞用にふさわしい。赤褐色の果実は，勲しても口を開 かぬので，クチナシの名の由来である。果実は漢方の岀榶辛で，消炎，止血の効果がある。薬用のほかに山嫲子 は無害の黄色着色料として，沢庵などの食品着色に用い る。また古米，山榶子の黄色色素は衣類の染料として使用された。

クコの根皮は地骨皮

広く各地に白生するクコ枸杈 Lycium chinense Mill． は，ナス科の落葉低木で，薬用に栽培される。葉腋に淡紫色の5弁花をつける。赤色卵形の果実はベタインを含 み，強壮剤で食用にするが，酒に浸して枸杞酒を造る。果実を乾燥したものは，漠方の构杞豙である。葉にはル チンを含み，乾燥した构杞葉も漢方で強壮薬とする。

根皮を乾燥したものは地骨虔で，ベタイン，ステロー ルなどの成分を含み，解熱，強壮剤としている。

江戸幕府の毒薬取締

昔は洋の東西を問わず，毒殺が公然の秘密のように，一服盛る物騒なささやきが交わされた。大名の家督相続 をめぐるお家騒動には，毒薬が暗躍した。日頃から主君 の食事は，自分の命に代えて，腹心の毒味役が入念に食味する重要な役割であった。

江戸幕府は庶民の保健政策には無関心で，売薬の取締 も放任主義であった。ただ，毒薬と似せ薬（筫薬）の売買に関しては㜄禁し，犯した者は容赦なく極刑をもって対処した。たとえ同類でも訴え出た者には褒美を与える という制度であった。正徳元年（1711）幕府がこの禁令 を箇条背きにした制礼を各地区の辻に建てると，世間で

は毒薬札と呼んだ。
宽保2年（1742）に定めた＂徳川百ヶ条＂の中には，一，毒薬売り候者は，引甶しの上獄門（晒し首），一，似 せ薬種売り候者は引廹しの上死罪で，最も重い刑罚が科 された。

ケシの魔性

地中海沿岸地方原産のケシ Papaver somniferum L． は，トルコ，インド，中国東北部で栽培きれた。阿片は人類の歴史が始まった数千年前の古代バビロンやエジプ トの医薬の記録に表われ，人間との深い関わりが類推さ れる。

日本に最初に阿片が輸入された確かな記録は見当たら ない。菑府が字保7年（1722）和薬の流通事情を調査す るため，江戸，京都，大阪，堺，駿府（静岡）の 5 都市 に，和薬改会所を設置した。＂薬種六ヶ条＂の中に，今後通用すべき和楽の項に，和阿片（ケシのやに）として，京都の薬種問屋の掁渺に，天明6年（1786）テリアカ （阿片製剤），䆓政3年（1791）阿片1斤8分とあるに過 ぎない。

ひるがえって19世紀初頭，ドイツの薬剤師 F．W．Sertür－ ner が，神秘的な阿片の麻酕作用や鎮痛，鎮痙などの有効成分の解明に挑戦して，窕素を含むアルカリ様の塩基性物質を発見した。危うく死を免れた昏睡から覚めた人体実験から，ギリシャの眠りの神にちなんで，モルヒネ と命名した。この1817年の発見は，まさに近代薬学の夜明けを告げる画期的のものであった。
間もなく東洋では渭国の存亡に関わる阿片戦争が起こ った。イギリスが清国から多量に茶を輸入した見返り物資として，植民地のインド産の阿片を大量に輸出した。清国政府は阿片吸甜の害毒を取蟐ったが，既に阿片の悪習が参透して密輸が横行した。やむなく1839年広東にあ った英人所有の阿片を続却したことが開戦の導火線とな った。敗戦の結果，1842年の南京条約で香港を割譲し，巨額の賠償金の外に，インド阿片の輸入を認めざるを得 なかった。

その風聞は鎖国日本にも伝わったが，幕府は近代文明 の発達した列強の圧力に屈して，開国に踏み切らざるを得なかった。安政元年（1854）米英を初め各国と和親条約に続いて，締結した通商条約の条文中に，必ず阿片輸入禁止の条件が明記された。

明治政府も直ちに明治元年（1868）閏4月19日付の太政官布達で，阿片煙草敞禁令を告示した。販売者は斬罪 に処した（明治 3 年）。医療用阿片の国産化については，明治 8 年（1875）11月，内務省令で全国的に調査を命じ て以来，逐次峻厳な制度が強化された。

マンダラゲ曼陀羅華の毒とくすり

熱带アジア原産のDatura alba Neesは日本各地に帰化して，チョウセンアサガオ，マンダラゲ，キチガイナ スビその他，特有の各種名称で栽培された。白色，淡紫色のアサガオ様の五弁花を開く。全草とくに種子は猛毒 で，スコポラミン，ヒヨスチアミン等のアルカロイド類及び脂肪油の原料とする。漢方の曼陀羅葉は鎮痙，喘息煙草に用いる。

江戸後期の漠方医は手術の麻醉薬に，マンダラゲの花 と葉の浸剤•麻沸湯を使用した。華岡青洲（1760～1835） が創製した麻酔薬•通仙散の処方は，マンダラゲ，烏頭，当帰，白茾，川莎を配合した。最初の人体実験は，妻の自発的な献身によって成功したが，副作用で妻は失明の犧牲を甘受したのであった。

文化2年（1805）青洲は初めて麻酔薬•通仙散によっ て，乳岩（癌）の手術を成し遂げて，英米に40年先んじ た世界的業績は，医学界に高く覚賛された。米国の歯科医モルトンは1844年エーテルを麻酔薬に，英国のシンプ ソンは1847年クロロホルムの麻酸法に成功して，40年後青洲の後壉を挥した。

不朽の哲理

夏に小白花が群がって咲くドクニンジン Conium macla－ tum L．は，全草にアルカロイド・コニインを含み，毒性が強く，中枢神経を麻㾊ざせる。中毒死因は呼吸麻痺 による。

古代ギリシャでは，処刑者の毒殺にドクニンジンのエ キスを用いた。古代ギリシャの偉大な哲学者ソクラテス （前469～前399頃）は，人倫道徳の実践を主唱したが，国是に反するとして告発され，死刑を宣告された。彼は信念を曲げず従容と，ドクニンジンのエキスを盛った毒杯 を仰いだのであった。

〔編集後記〕

このところの政宗ブームで，今夏はさぞかし東北地方 は大変な人出で賑わうことでしょう。皆様方もバカンス で何処かへご旅行のご計画の方も多いことと存じます。

さて今回は前号より引続いて，関根，福田，根本の各先生方と，新たに，小野，水野両先生に執筆をお願い致 しました。小野先生には半乷体加工における使用薬品の重要性，また水野先生にはガンと食生活のかかわりにつ いて，夫々の専問分野から興味深い玉稿を賜り，内容的 にもバラエティィ一に富み，皆様方のご期待に副い得るも のと確信しております。
加えて本号より活字を若干大きくして見易く致しまし たので，今後共尚一層のご愛読をお願い申し上げます。

〈松田記〉

〒103 東京都中央区日本橋本町 3 丁目 2 番 8 号電話（03）279－1751
編集責任者 松田 三郎 昭和62年7月1日 発行

