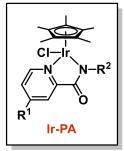
Reductive Amination

Part 1: Reductive Amination Catalysts


Part 2: Asymmetric Reductive Amination Catalysts

Reductive Amination Catalysts

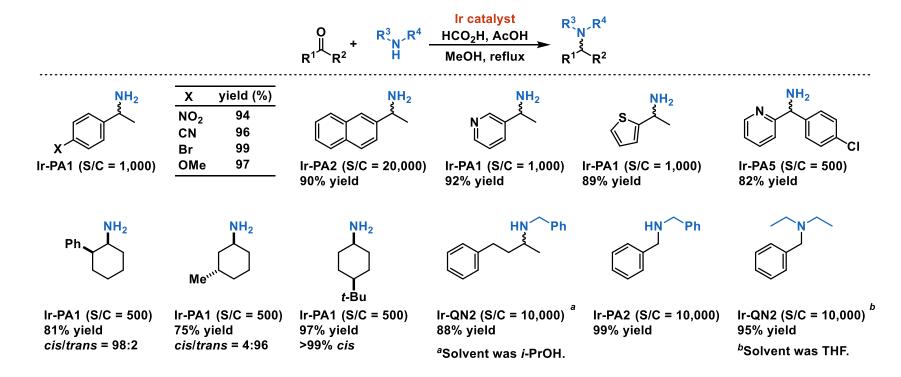
- Preparation of primary, secondary or tertiary amines from carbonyl compounds
- High catalytic activity
- Using formic acid as a hydrogen source
- High functional group tolerance (e.g., -NO₂, -CN, -Br...)

Iridium Complexes for Reductive Amination

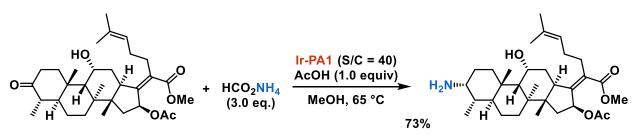
For primary amine synthesis

	Ir-PA	R ¹	R ²	Application		
	Ir-PA1	Н	4-Me ₂ NC ₆ H ₄	For general ketones		
l	Ir-PA2	Me ₂ N	4-Me ₂ NC ₆ H ₄	High reactivity		
l	Ir-PA3	Me ₂ N	Н	For steric hyndered ketones		
l	Ir-PA4	Н	$4-CF_3C_6H_4$	For electron deficient ketones		
	Ir-PA5	Н	$4-NO_2C_6H_4$	For electron deficient ketones		

For secondary or tetiary amine synthesis


Ir-QN	R	Application
Ir-QN1	Н	For general ketones
Ir-QN2	Me ₂ N	High reactivity

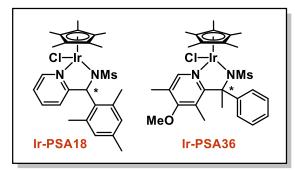
Please see this brochure for details https://www.kanto.co.jp/dcms_media/other/OFC-05-EN.pdf


Typical Procedure

To a solution of ketone $\underline{\mathbf{1}}$ (20 mmol) in methanol (10 mL) was added ammonium formate (3.78 g, 60 mmol), formic acid (1.51 mL, 40 mmol) and **Ir-PA2** (1.29 mg, 0.02 mmol) under Ar atmosphere. After stirring for 4 h under reflux, the solvent was evaporated under a vacuum. An aqueous solution of NaOH was added to the resulting residue and extracted with CH_2CI_2 . The combined organic extracts were dried over Na_2SO_4 and evaporated under reduced pressure. The residue was purified by column chromatography to afford amine $\underline{\mathbf{2}}$ (90% yield).

Substrate Scope

Application



C. K. Hill, J. F. Hartwig, Nat. Chem. 2017, 9, 1213-1221.

Structure	Product No.	Package	Structure	Product No.	Package	
Reductive Amination Catalysts						
CI-Ir N-(CH ₃) ₂	07127-68	100 mg	CI-Ir N-N-(CH ₃) ₂	07429-68	100 mg	
Ir-PA1	07127-95	500 mg	(H ₃ C) ₂ N Ir-PA2	07429-95	500 mg	
CI-Ir, NH	07430-68	100 mg	CI-Ir. N-CF3	07964-68	100 mg	
(H₃C)₂N Ir-PA3	07430-95	500 mg	Ir-PA4	07964-95	500 mg	
CI-Ir N-N-NO ₂	07965-68	100 mg				
Ir-PA5	07965-95	500 mg				
CI-II	07128-68	100 mg	CIIr.	07966-68	100 mg	
Ir-QN1	07128-95	500 mg	Ir-QN2	07966-95	500 mg	

Asymmetric Reductive Amination Catalysts

Chiral Iridium Complexes for Asymmetric Reductive Amination

- Preparation of chiral primary amines (β -aminotetralins, α -amino acids ...)
- Using chiral amino alcohol as a chiral auxiliary
- Easy removal of chiral auxiliaries under mild oxidative conditions
- High catalytic activity and diastereoselectivity
- Using formic acid as a hydrogen source

Please see the brochure for details https://www.kanto.co.jp/dcms_media/other/OFC-12_EN.pdf

Typical procedure

To a mixture of ketone **1** (966 mg, 4.97 mmol), (*R*)-phenylglycinol (828 mg, 6.04 mmol) and HCO₂H (566 μL, 15.0 mmol) in MeOH (5 mL) was added (*S*)-Ir-PSA18 (0.168 mg, 0.252 μmol) under Ar atmosphere. The reaction vessel was connected to inert gas line of balloon because of CO₂ gas evolution during the reaction. After stirring for 18 h at 40 °C, the reaction was quenched by adding a sat. NaHCO₃ aq., and the mixture was extracted with EtOAc. The combined organic extracts were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. To a mixture of this crude material, 40% MeNH₂ aq. (5.0 mL, 60 mmol) in MeOH/H₂O (1/1, 30 mL) was added H₅IO₆ (3.77 g, 16.5 mmol). After stirring for 18 h, the reaction was quenched by adding a sat. NaHCO₃ aq. and 10% (w/w) Na₂S₂O₃ aq., and the mixture was extracted with EtOAc. The combined organic extracts were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography to afford optically active amine (*S*)-2 (889 mg, 91%, 95% ee).

Substrate Scope

S/C = 5,00080% isolated yield 82% ee

S/C = 20,00074% isolated yield 96% ee

S/C = 1,00086% isolated yield 82% ee

S/C = 2,00075% isolated yield 96% ee

ÒМе S/C = 20,00091% isolated yield 95% ee

S/C = 2,00073% isolated yield 98% ee

S/C = 5,00093% isolated yield 96% ee

S/C = 2,00084% isolated yield 99% ee

S/C = 5,00068% isolated yield 97% ee

S/C = 2,00088% isolated yield 98% ee

S/C = 5,00081% isolated yield 90% ee

S/C = 2.00078% isolated yield 98% ee

Large Scale Reaction

Direct Asymmetric Reductive Amination to *N*-Alkylamines

a N-Fmoc amide could be obtained by sequential Fmoc-amidation.

Structure	Product No.	Package	Structure	Product No.	Package		
	Asymmetric Reductive Amination Catalyst, Reagents						
CI-III N-Ms Ph HaCO (S)-Irr-PSA36	07658-68	100 mg	CI-III N-Ms N-Ms YPh HCO (R)-Ir-PSA36	07035-68	100 mg		
CI-Ir N-Ms mesityl	07060-68	100 mg	CI—Ir N-Ms mesityl (R)-Ir-PSA18	07071-68	100 mg		
Y 211	44078-52	5 g	- OH	42247-2A	5 g		
H ₂ N OH L-Valinol	44078-32	25 g	H ₂ N OH (R)-(-)-2-Amino-3-methyl-1-butanol	42247-3A	25 g		
Ph OH	30757-1A	1 g	Ph OH	18382-1A	5 g		
H ₂ N (S)-(+)-Phenylglycinol	30757-2A	5 g	H ₂ N OH D(-)-α-Phenylglycinol	18382-2A	25 g		
	37233-30	25 g	H_5IO_6	32061-30	25 a		
NalO ₄ Sodium periodate	37233-20	100 g	Orthoperiodic acid	32001-30	25 g		
2 2 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	37233-00	500 g					

We provide not only reagents, but also bulk chemicals, contract synthesis, contract development and catalyst screening services. We are ready to help your research and industrial production.

We provide not only reagents, but also bulk chemicals, contract synthesis, contract development and catalyst screening services. We are ready to help your research and industrial production.

Our Products (Catalysts and Ligands)

https://www.kanto.co.jp/english/products/organics/organic03.html

Product Examples We can Offer

OH
$$F_3C$$
 F_3C F_3C

- We can also supply these compounds in bulk scale.
- Both enantiomers are available.

OMe

- Only a part of products is listed here.
- If you need other compounds, please feel free to contact us.

Ligand Examples We can Offer

- Both enantiomers are available.
- Only a part of ligands is listed here.
- If you need other ligands, please feel free to contact us.